

Advanced multiphysics of geomaterials: multiscale approaches and heterogeneities

ALERT OZ / EURAD GAS & HITEC Summer School 28 August – 01 September 2023 • Liège (Belgium)

> Pierre BÉSUELLE, <u>Frédéric Collin</u>, Anne-Catherine DIEUDONNÉ, Sebastia OLIVELLA

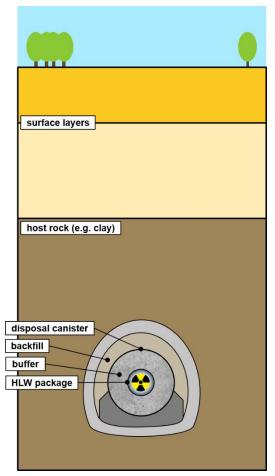
The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n° 847593.

Advanced multiphysics of geomaterials: Multiscale modelling of gas flow

ALERT OZ / EURAD GAS & HITEC Summer School 28 August – 01 September 2023 • Liège (Belgium)

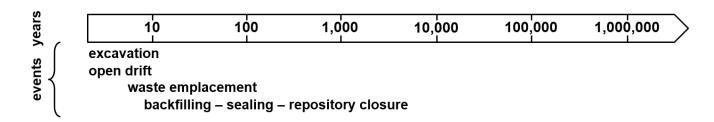
Gilles Corman, Frédéric Collin

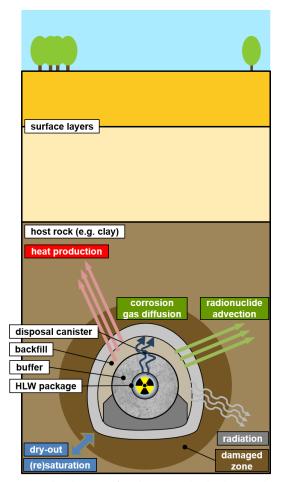
The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n° 847593.



Conceptual scheme of a deep geological repository.

Geological disposal of radioactive wastes

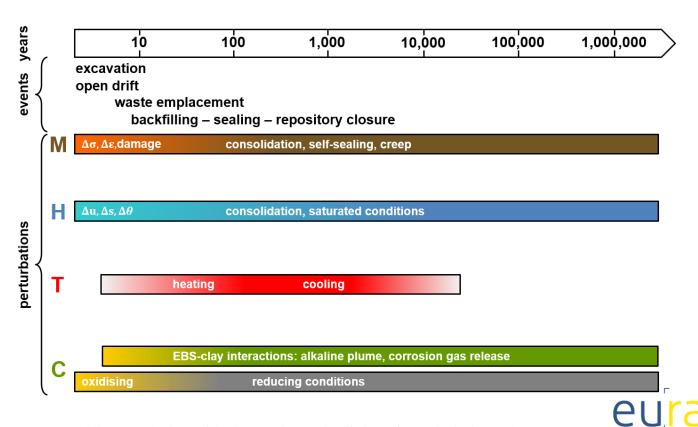


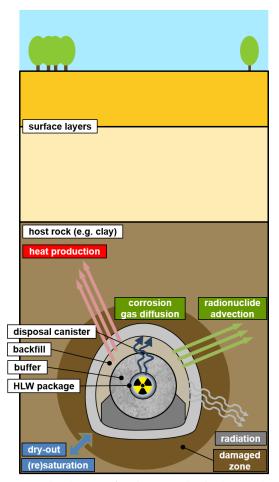


Conceptual scheme of a deep geological repository.

Geological disposal of radioactive wastes

► Complex multi-physical (**THMC**) processes

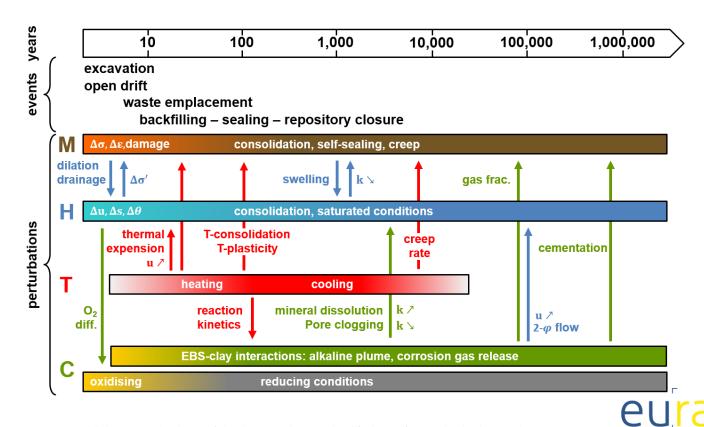


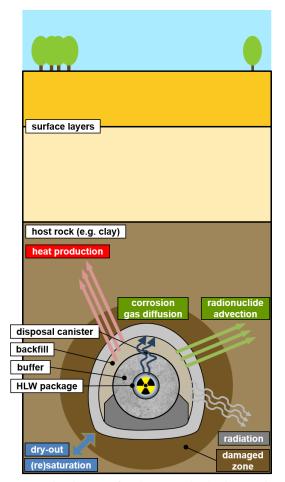


Conceptual scheme of a deep geological repository.

Geological disposal of radioactive wastes

- Complex multi-physical (THMC) processes
- Interactions between processes

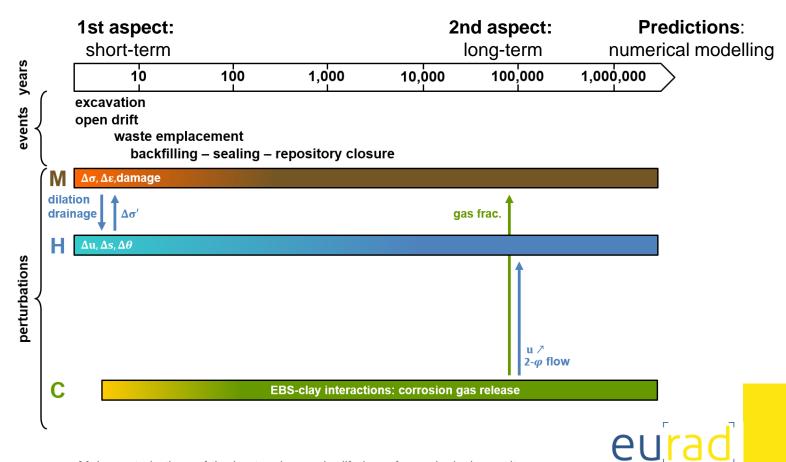




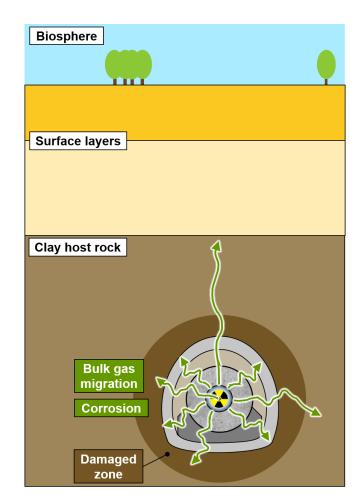
Conceptual scheme of a deep geological repository.

Geological disposal of radioactive wastes

- Complex multi-physical (THMC) processes
- ► Interactions between processes



Gas migration issue



Corrosion

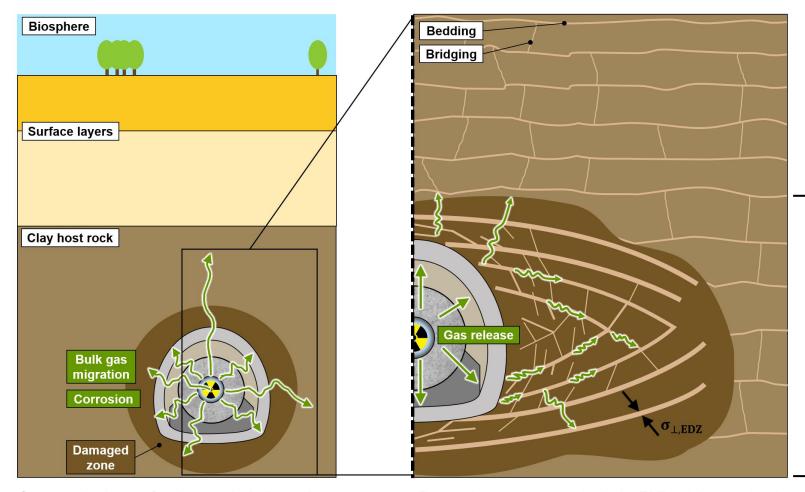
Gas release

Gas pressure build-up

Potential gas migrations through the barrier

Conceptual scheme of a deep geological repository focussing on the gas generation process.

Gas migration issue

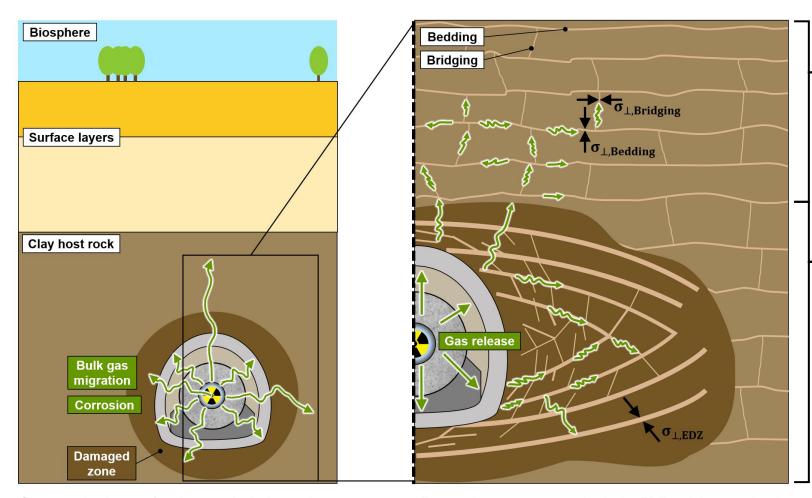


Expected gas transport modes in the EDZ and the sound rock, from ONDRAF/NIRAS (2016).

Excavation damaged zone (EDZ)

 Governed by the hydraulic properties modifications induced by fracturation

Gas migration issue



Expected gas transport modes in the EDZ and the sound rock, from ONDRAF/NIRAS (2016).

Sound rock layers

- Governed by the rock structure <u>at a micro-level</u>
- ► Multi-Scale Model

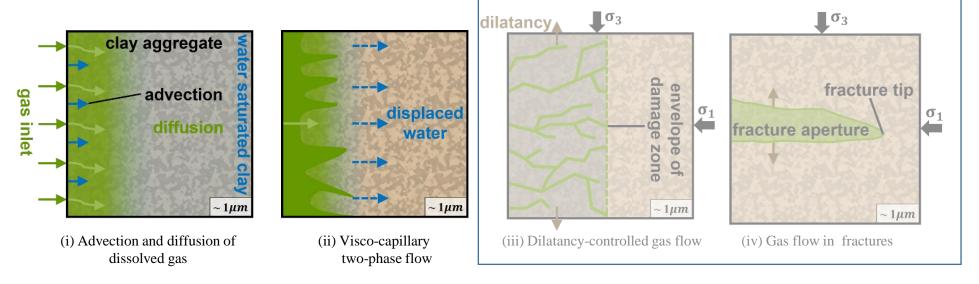
Excavation damaged zone (EDZ)

 Governed by the hydraulic properties modifications induced by fracturation

Content

- Context
- 2 From experimental evidence to modelling
- Multi-scale modelling approach
- Preliminary modelling
- **6** Modelling gas injection experiment
- **6** Conclusions

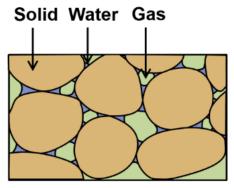
Background



Phenomenological description of the gas transport processes relevant to low-permeable clayey rocks, adapted from Marschall et al. (2005).

Classical HM two-phase flow models

Classical HM two-phase flow models



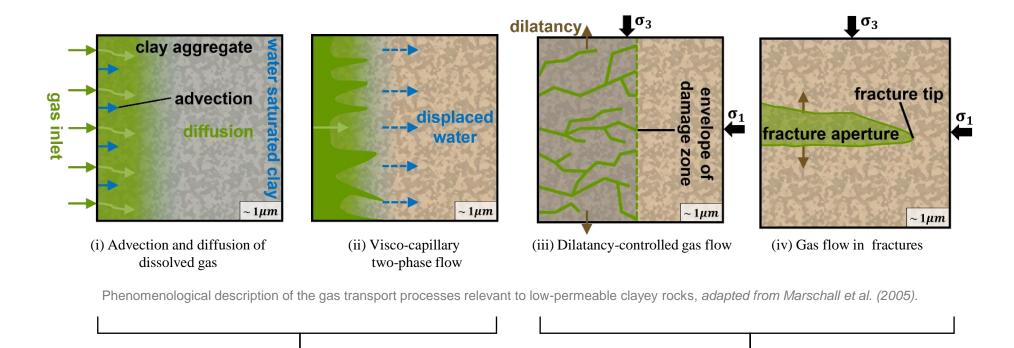
Triphasic porous medium

Solid phase	Liquid phase	Gas phase	
	Liquid water	Water vapour	Water species
Mineral species	Dissolved H ₂	Dry H ₂	H ₂ species

Bright, Aster, Lagamine, OpenGEOSys, Though2/3

Classical HM two-phase flow models

Background

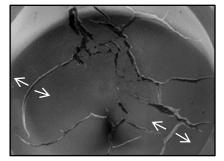


Supported by experimental data

eurad

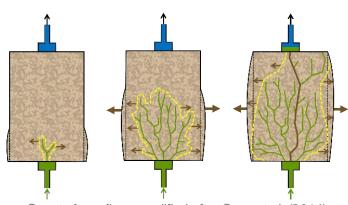
Laboratory experiments

Clay-rich material



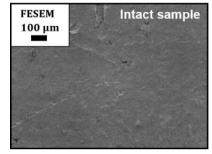
Gas-induced fracturing, Wiseall et al. (2015)

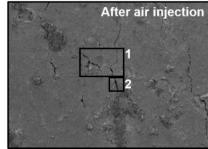
Callovo-Oxfordian claystone

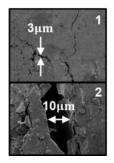


Onset of gas flow, modified after Cuss et al. (2014)

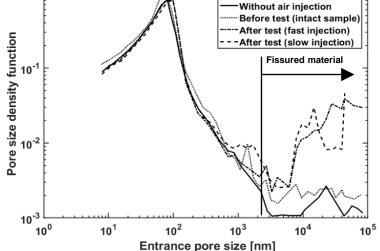
Boom Clay



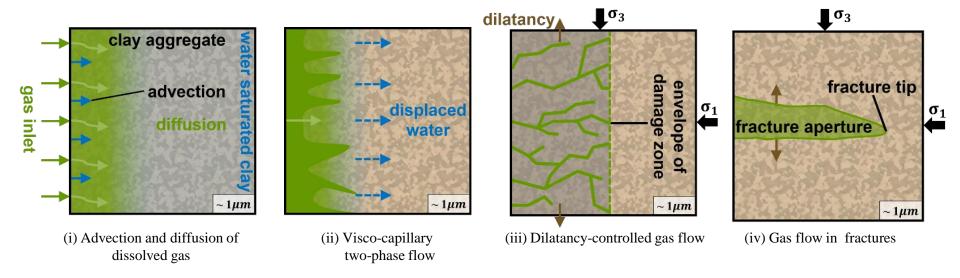




Changes in Boom Clay pore size distribution after air injection, and corresponding FESEM images with zooms on the detected fissures, modified after Gonzalez-Blanco et al. (2022)



Background



Phenomenological description of the gas transport processes relevant to low-permeable clayey rocks, adapted from Marschall et al. (2005).

Classical HM two-phase flow models

Supported by experimental data

- Natural heterogeneities represent preferred weaknesses for the process of opening discrete gas-filled pathway
- Introduce stronger coupling between gas flow and mechanical behaviour into the models.
 - ► Advanced HM models

Advanced HM models

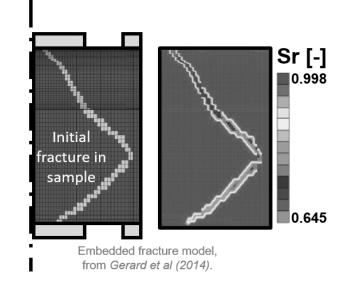
Macroscopic models

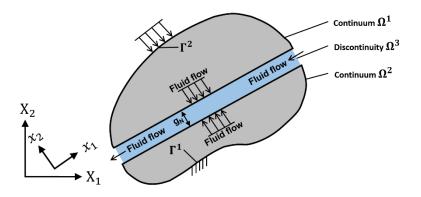
- No direct representation of local phenomena
- Enriched with micromechanical effects
- ► Examples:
 - Natural heterogeneity based models
 - Intrinsic permeability based models
 - Embedded fracture models
 - Explicit fracture based models

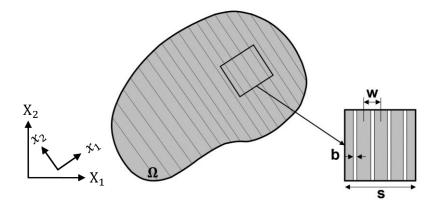
Olivella and Alonso (2008)

Pardoen et al. (2016)

Alonso et al. (2006) Cerfontaine et al. (2015)



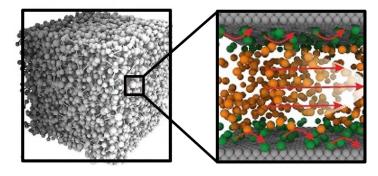




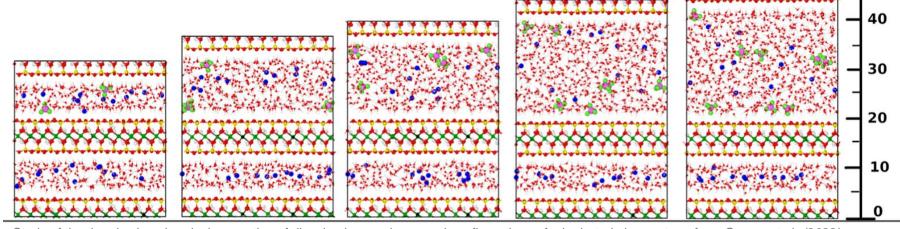
Advanced HM models

Microscopic models

- ▶ Direct modelling of all the microstructure complexity at very low scale
- Useful for modelling at the process scale
- High computational expense at the scale of a repository



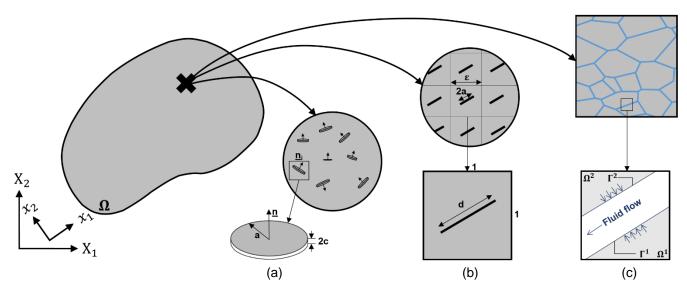
From pore network to molecular model, from Yu et al. (2019).



Advanced HM models

Micro-macro based models

- ► Combines the benefits from large- and small-scale modelling strategies
- Explicit description of all the constituents on their specific length scale through a REV definition

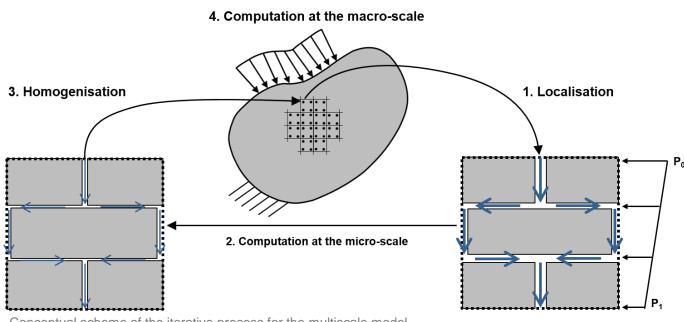


Content

- Context
- 2 From experimental evidence to modelling
- Multi-scale modelling approach
- Preliminary modelling
- **6** Modelling gas injection experiment
- **6** Conclusions

Overview

- Macro-to-micro scale transition: Localisation of the macro-scale deformations to the micro-scale
- Resolution of the boundary value problem at the micro-scale
- Micro-to-macro scale transition: Homogenisation of the micro-scale stresses to compute the macroscopic quantities
- Resolution of the boundary value problem at the macro-scale



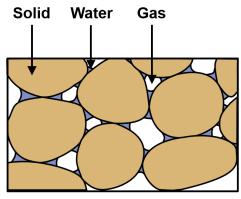
Conceptual scheme of the iterative process for the multiscale model

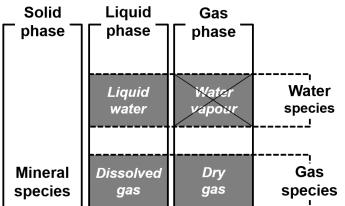
Hybrid developed tool

- Complete hydraulic system implemented and solved at the micro-scale
- Mechanical effects addressed at the macro-scale and implicitly integrated at the lower scale through HM couplings

Model formulation at the macroscopic scale

Clay material treated as a porous medium





Balance equations

Momentum

$$\frac{\partial \sigma_{ij}}{\partial x_j} + \rho g_i = 0$$

Water

$$\dot{M}_w + \frac{\partial f_{w,i}}{\partial x_i} - Q_w = 0$$
Liquid water

Gas

$$\underbrace{\dot{M}_{g} + \frac{\partial f_{g,i}}{\partial x_{i}}}_{\text{Dry gas}} + \underbrace{\dot{M}_{dg} + \frac{\partial f_{dg,i}}{\partial x_{i}}}_{\text{Dissolved gas}} - Q_{g} = 0$$

Constitutive equations

Total stress definition

$$\sigma_{ij} = \sigma'_{ij} + b_{ij} \left[S_{r_w} p_w^M + (1 - S_{r_w}) p_g^M \right] \delta_{ij}$$

Variation of solid density

$$\frac{\dot{\rho}_{s}}{\rho_{s}} = \frac{(b_{ij} - \phi)(S_{r}^{w}\dot{p}_{w} + S_{r}^{g}\dot{p}_{g}) + \dot{\sigma}'}{(1 - \phi)K_{s}}$$

Macro-to-micro scale transition: Localisation

Decomposition of the micro-kinematics:

■ Macro-pressure fields (\square^M) of water and gas must be identical to the micro-quantities (\square^m) for any point of the material

$$p_w^M(\hat{P}) = p_w^m(\hat{P}) \qquad \qquad p_g^M(\hat{P}) = p_g^m(\hat{P})$$

• For any point P close to \hat{P} , at the macroscopic scale:

$$p_w^M(P) \approx p_w^M(\hat{P}) + \frac{\partial p_w^M(\hat{P})}{\partial x_j} \left(x_j - \hat{x}_j \right) \qquad p_g^M(P) \approx p_g^M(\hat{P}) + \frac{\partial p_g^M(\hat{P})}{\partial x_j} \left(x_j - \hat{x}_j \right)$$

Higher-order terms neglected

at the microscopic scale:

$$p_w^m(P) \approx p_w^M(\hat{P}) + \frac{\partial p_w^M(\hat{P})}{\partial x_j} \left(x_j - \hat{x}_j \right) + p_w^f(\hat{P}) \qquad p_g^m(P) \approx p_g^M(\hat{P}) + \frac{\partial p_g^M(\hat{P})}{\partial x_j} \left(x_j - \hat{x}_j \right) + p_g^f(\hat{P})$$

Separation of scales

 Approach restricted to situations where the variations of the macroscopic fields is large compared to the variations of micro-scale fields

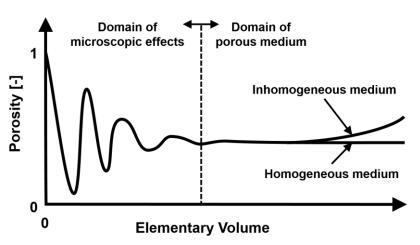
$$\frac{\partial p_w^M(\hat{P})}{\partial x_j} \left(x_j - \hat{x}_j \right) + p_w^f(\hat{P}) \ll p_w^M(\hat{P})$$

$$\frac{\partial p_g^M(\hat{P})}{\partial x_j} \left(x_j - \hat{x}_j \right) + p_g^f(\hat{P}) \ll p_g^M(\hat{P})$$

Micro-scale boundary value problem

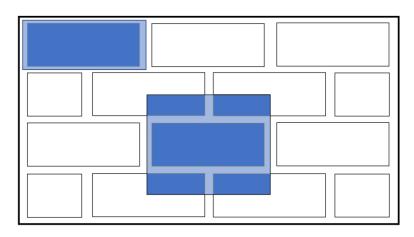
REV generation in general

- Representative of the microstructure
 - Large enough to represent the microstructure
 - Small enough to satisfy the principle of scale separation



Representativeness of an elementary volume applied to the concept of porosity, *Bear* (1972).

- Spatial repetition of a very small part of the whole microstructure
 - Relevant statistical representation of any random part of the micro-scale
 - Not a unique choice

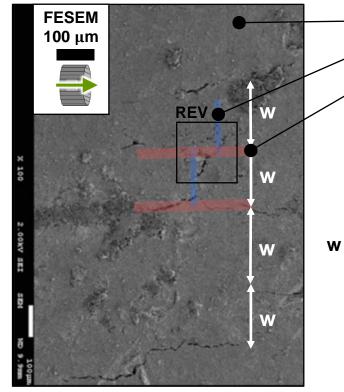


Examples of two rectangular unit cells, Anthoine (1995)

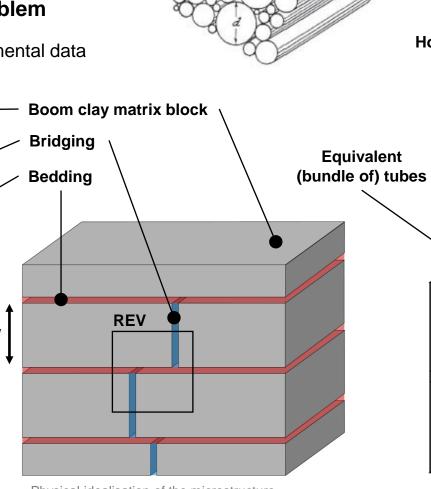
Multi-scale modelling

Micro-scale boundary value problem

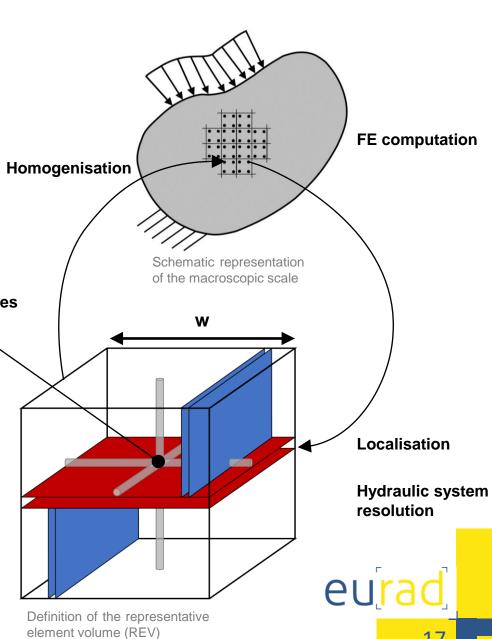
Multi-scale model supported by experimental data



Internal visualisation of a Boom Clay sample using FESEM, from Gonzalez-Blanco (2017).



Physical idealisation of the microstructure.



Micro-scale boundary value problem

Balance equations at the micro-scale

Gas

$$+ \frac{\partial f_{g_i}^m}{\partial x_i} + \sum_{g} + \frac{\partial f_{dg_i}^m}{\partial x_i} = 0$$

Water

$$+ \frac{\partial f_{w_i}^m}{\partial x_i} = 0$$

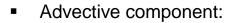
$$\dot{M}_g^m \dot{M}_{dg}^m \dot{M}_w^m$$
 Variations of fluid contents

$$\begin{split} f_{w_i}^m &= \rho_w q_{w_i} \\ f_{g_i}^m &= \rho_g q_{g_i} & \text{Mass flows} \\ f_{dg_i}^m &= \rho_{dg} q_{w_i} + i_{dg_i} \end{split}$$

 Mechanical effects: computed at the macro-scale and transferred to the micro-scale through <u>HM couplings</u>

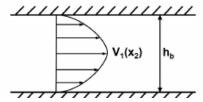
Micro-scale boundary value problem

Constitutive equations: Hydraulic problem considering a channel flow model (Navier-Stokes equations)



$$q_{\alpha_i} = -\frac{k_{r_{\alpha}}}{\mu_{\alpha}} \frac{1}{A} \kappa_{frac} \frac{\partial p_{\alpha}}{\partial x_i} = -\frac{k_{r_{\alpha}}}{\mu_{\alpha}} \frac{h_b^3}{12w} \frac{\partial p_{\alpha}}{\partial x_i}$$

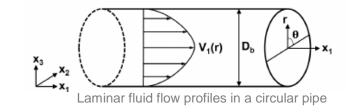
$$q_{\alpha_i} = -\frac{k_{r_{\alpha}}}{\mu_{\alpha}} \frac{1}{A} \kappa_{frac} \frac{\partial p_{\alpha}}{\partial x_i} = -\frac{k_{r_{\alpha}}}{\mu_{\alpha}} \frac{h_b^3}{12w} \frac{\partial p_{\alpha}}{\partial x_i} \qquad q_{\alpha_i} = -\frac{k_{r_{\alpha}}}{\mu_{\alpha}} \frac{1}{A} \kappa_{tube} \frac{\partial p}{\partial x_i} = -\frac{k_{r_{\alpha}}}{\mu_{\alpha}} \frac{D^4}{128w^2} \frac{\partial p}{\partial x_i}$$



Laminar fluid flow profiles between two parallel plates

$$\kappa_{frac} = -\frac{h_b^2}{12} h_b \cdot w$$

$$\kappa_{tube} = -\pi \frac{D^4}{128}$$



$$\begin{array}{c|c} h_{w}/_{2} \\ h_{g} \\ h_{w}/_{2} \end{array} \begin{array}{c} \text{Water} \\ \text{Gas} \\ \text{Water} \\ \end{array}$$

Gas flow in between of water flows in a fracture space

$$k_{r_w} = \frac{S_r^2}{2}(3 - S_r)$$

 $k_{r_g} = (1 - S_r)^3$

$$k_{r_w} = S_r^2$$

$$k_{r_o} = (1 - S_r)^2$$

Gas flow in between of water flows in a circular pipe

$$i_{dg_i} = -S_{r_w} \, \bar{\mathsf{\tau}} \, D_{dg/w} \, \rho_w \, rac{\partial}{\partial x_i} \left(rac{\mathsf{\rho}_{dg}}{\mathsf{\rho}_w}
ight)$$

Micro-scale boundary value problem

Constitutive equations: Hydro-mechanical couplings

Stress-dependent evolution of micro-elements aperture

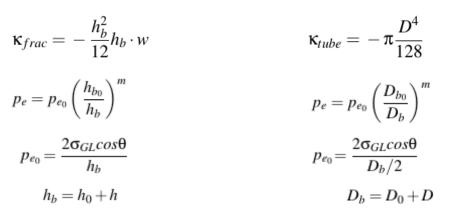
$$\Delta \sigma' = K_n \, \Delta h$$

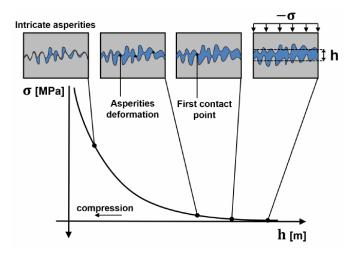
$$\Delta \sigma' = K \, \Delta D_b$$

$$K_n = \frac{K_n^0}{\left(1 + \frac{\Delta h}{h_0}\right)^2}$$

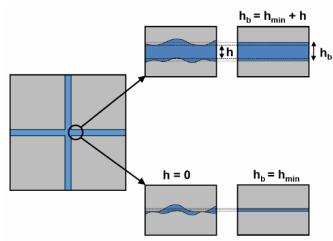
$$K = \frac{2C}{D_0}$$

Stress-dependent formulation of the transmissivity and the entry pressure of micro-elements





Constitutive law describing the normal behaviour of a rough rock joint, *Cerfontaine* (2015)

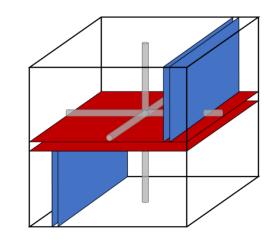


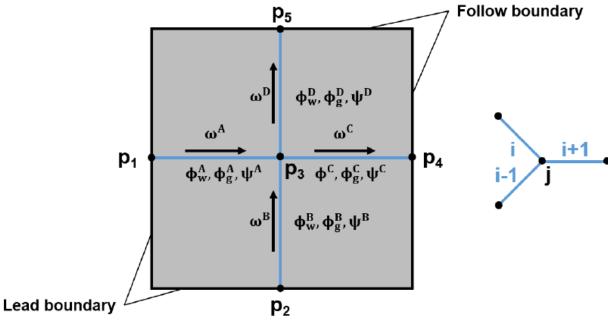
Definitions of the hydraulic and the mechanical aperture in reality (left) and in the modelling (right), *Marinelli (2016)*

Micro-scale boundary value problem

General principles for numerical resolution of the hydraulic system

- Hydraulic network respecting these conditions:
 - Anti-symmetric boundary fluxes
 - Macroscopic pressure gradient between the boundaries
- Hydraulic problem established through mass balance on each node (j)
- Hydraulic problem solved
 - For a given configuration
 - Under steady-state conditions
 - By applying the macro-pressure to one node





Example of a channel network with the mass balance on node j

Micro-scale boundary value problem

General principles for numerical resolution of the hydraulic system

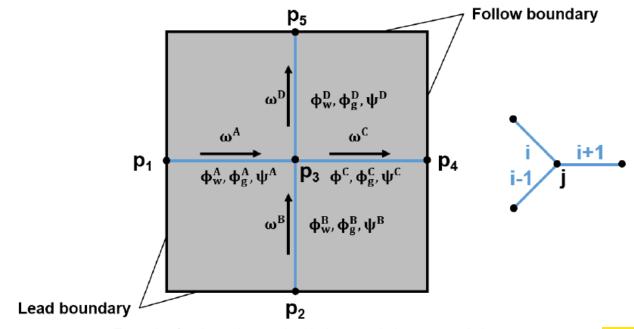
- Hydraulic network respecting these conditions:
 - Anti-symmetric boundary fluxes
 - Macroscopic pressure gradient between the boundaries
- => Channel (fracture or tube) mass fluxes of water and gas

$$\omega_{w} = -\underbrace{\frac{\rho_{w}k_{r_{w}}}{\mu_{w}}\kappa\frac{\partial p_{w}^{m}}{\partial s}}_{\text{Advection of liquid water}}$$

$$\omega_{g} = -\underbrace{\frac{\rho_{g}k_{r_{g}}}{\mu_{g}}\kappa\frac{\partial p_{g}^{m}}{\partial s}}_{\text{Advection of gaseous gas}} - \underbrace{H_{g}\frac{\rho_{g}k_{r_{w}}}{\mu_{w}}\kappa\frac{\partial p_{w}^{m}}{\partial s}}_{\text{Advection of dissolved gas}}$$

$$-S_{r_{w}}\bar{\tau}D_{dg/w}\frac{H_{g}}{\rho_{w}}\left(\frac{\rho_{w}\rho_{g,0}}{p_{g,0}}\frac{\partial p_{g}^{m}}{\partial s} - \frac{\rho_{g}\rho_{w,0}}{\chi_{w}}\frac{\partial p_{w}^{m}}{\partial s}\right)$$

Diffusion of dissolved gas



Example of a channel network with the mass balance on node j

Micro-scale boundary value problem

General principles for numerical resolution of the hydraulic system

- Hydraulic problem established through mass balance on each node (j)
 - Mass conservation principle, i.e. for each node of the network, the sum of the input flows is equal to the sum of the output flows

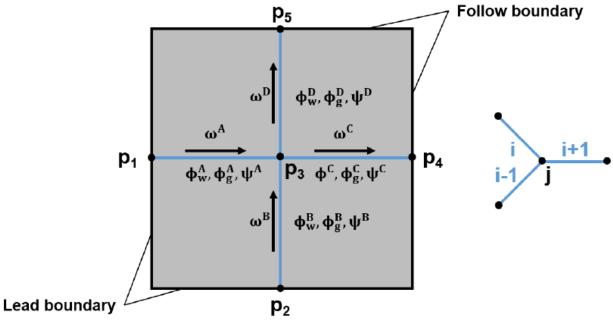
$$\frac{d\omega_{\alpha}^{i}}{ds^{i}} = 0 \qquad \Leftrightarrow \qquad \omega_{\alpha}^{i-1} + \omega_{\alpha}^{i} + \omega_{\alpha}^{i+1} = 0$$

$$\alpha = w, g \qquad \text{Liquid or gaseous phase}$$

Well-posed hydraulic system to solve

$$\begin{bmatrix} G_{ww} \end{bmatrix} \left\{ p_w^m \right\} = 0 \qquad \begin{bmatrix} G_{gg} \end{bmatrix} \left\{ p_g^m \right\} + \begin{bmatrix} G_{gw} \end{bmatrix} \left\{ p_w^m \right\} = 0$$

- For a given configuration
- Under steady-state conditions
- By applying the macro-pressure to one node



Example of a channel network with the mass balance on node j

Micro-to-macro scale transition: Homogenisation

Fluid fluxes

$$f_{w_{i}}^{M} \frac{\partial p_{w}^{\star,M}}{\partial x_{i}} = \frac{1}{\Omega} \int_{\Omega} f_{w_{i}}^{m} \frac{\partial p_{w}^{\star,M}}{\partial x_{i}} d\Omega = \frac{1}{\Omega} \int_{\Gamma} \bar{q}_{w}^{m} p_{w}^{\star,M} d\Gamma$$
$$= \frac{1}{\Omega} \frac{\partial p_{w}^{\star,M}}{\partial x_{i}} \int_{\Gamma} \bar{q}_{w}^{m} x_{i} d\Gamma$$
$$= \frac{1}{\Omega} \int_{\Gamma} \bar{q}_{w}^{m} x_{i} d\Gamma$$

$$f_{g_i}^M + f_{dg_i}^M = \frac{1}{\Omega} \int_{\Gamma} \bar{q}_g^m x_i d\Gamma$$

Fluid masses: total amount of fluids inside the fractures and tubes

$$M_w^M = \frac{1}{\Omega} \int_{\Omega_w^{int}} \rho_w d\Omega$$
$$= \rho_w S_{r_w} \phi_n$$

$$egin{aligned} M_g^M &= M_g^m + M_{dg}^m \ &= rac{1}{\Omega} \left(\int_{ec{Q}_g^{int}}
ho_g d\Omega + \int_{ec{Q}_w^{int}}
ho_{dg} d\Omega
ight) \ &=
ho_g \left(1 - S_{r_w}
ight) \phi_n +
ho_{dg} S_{r_w} \phi_n \end{aligned}$$

Macro-scale boundary value problem

Under matrix form:

$$\begin{bmatrix} \begin{bmatrix} K_{ww}^{M} \end{bmatrix}_{(3 \times 3)} & \begin{bmatrix} K_{wg}^{M} \end{bmatrix}_{(3 \times 3)} \\ \begin{bmatrix} K_{gw}^{M} \end{bmatrix}_{(3 \times 3)} & \begin{bmatrix} K_{wg}^{M} \end{bmatrix}_{(3 \times 3)} \end{bmatrix} \begin{cases} \delta \nabla p_{w}^{M} \\ \delta p_{w}^{M} \end{pmatrix}_{(3)} \\ \delta \nabla p_{g}^{M} \\ \delta p_{g}^{M} \end{cases}_{(3)} \end{cases} = \begin{cases} \begin{cases} \delta f_{w}^{M} \\ \delta \dot{M}_{w}^{M} \end{pmatrix}_{(3)} \\ \delta \dot{M}_{g}^{M} \\ \delta \dot{M}_{g}^{M} \end{cases}_{(3)} \end{cases}$$

Summarized as:

$$\left[A^{M}\right]_{(10\times10)}\left\{\delta U^{M}\right\}_{(10)}=\left\{\delta \varSigma^{M}\right\}_{(10)}$$

Content

- Context
- 2 From experimental evidence to modelling
- Multi-scale modelling approach
- Preliminary modelling
- **6** Modelling gas injection experiment
- **6** Conclusions

Preliminary modelling

One-element simulation

Bedding plane separation:

■ 300µm

Bedding plane aperture:

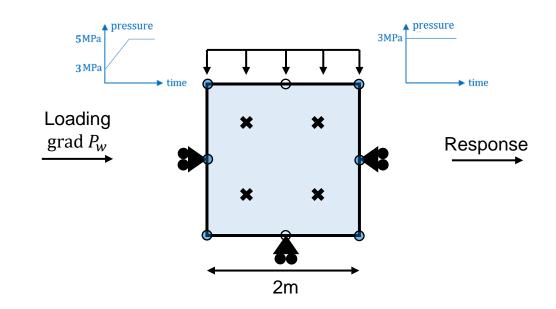
■ 0.1*µm*

Tubes diameter

→ Distribution curve

Bridging plane aperture

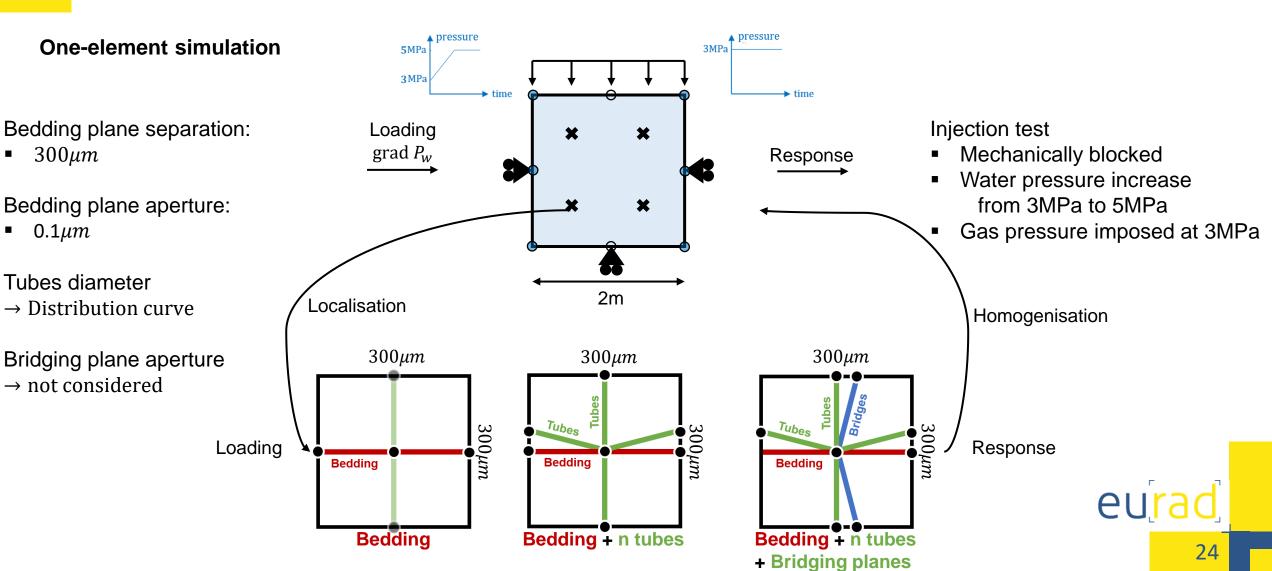
→ not considered



Injection test

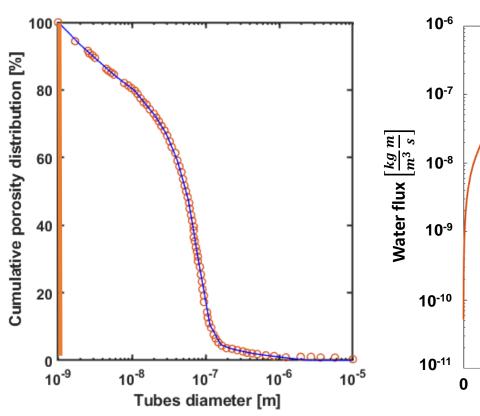
- Mechanically blocked
- Water pressure increase
 - 3MPa to 5MPa
- Gas pressure imposed at 3MPa

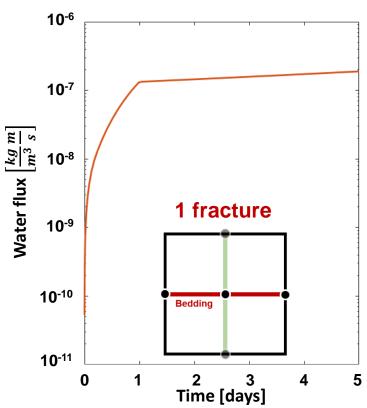
Preliminary modelling

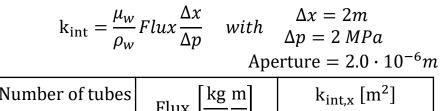


Preliminary modelling

One-element simulation

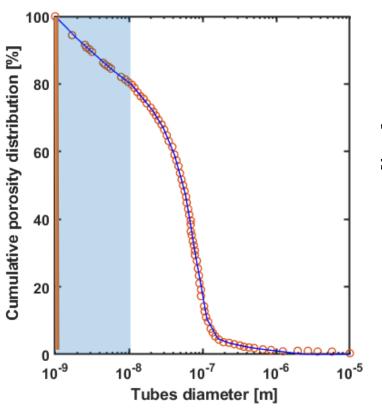


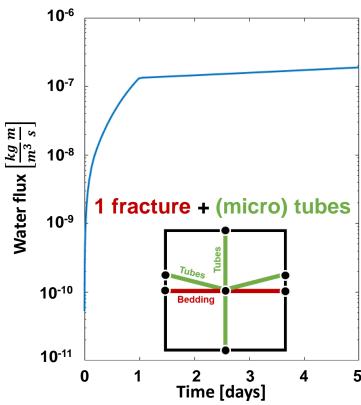




Number of tubes	Flux $\left[\frac{\text{kg m}}{\text{m}^3} \frac{\text{m}}{\text{s}}\right]$	k _{int,x} [m ²]
0	$1.581 \cdot 10^{-7}$	$1.581 \cdot 10^{-19}$

One-element simulation

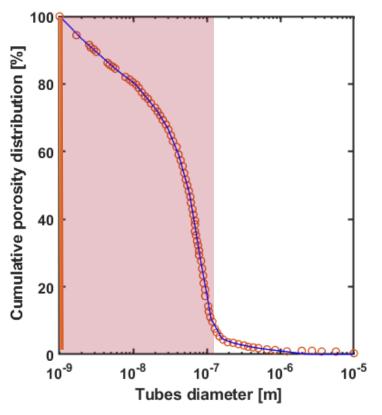


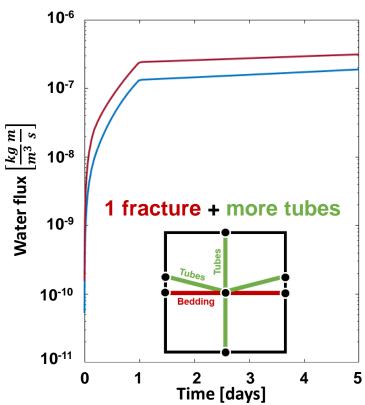


$$k_{int} = \frac{\mu_w}{\rho_w} Flux \frac{\Delta x}{\Delta p}$$
 with $\Delta x = 2m$
 $\Delta p = 2 MPa$
Aperture = $2.0 \cdot 10^{-6} m$

Number of tubes	Flux $\left[\frac{\text{kg m}}{\text{m}^3} \frac{\text{m}}{\text{s}}\right]$	k _{int,x} [m ²]
0	. ,	$1.581 \cdot 10^{-19}$
770	$1.643 \cdot 10^{-7}$	$1.643 \cdot 10^{-19}$

One-element simulation



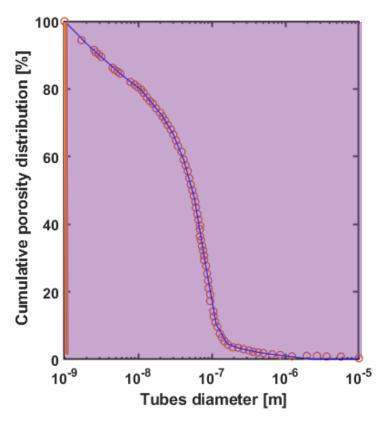


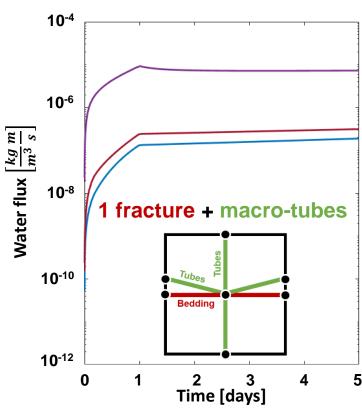
$k_{\rm int} = \frac{\mu_w}{\rho_w}$	$Flux \frac{\Delta x}{\Delta p}$	with Ape	$\Delta x = \Delta p = 2$ erture =		⁻⁶ m
C . 1	Гі	7	,	r 21	

Number of tubes	Flux $\left[\frac{\text{kg m}}{\text{m}^3}\frac{\text{m}}{\text{s}}\right]$	k _{int,x} [m ²]
0	$1.581 \cdot 10^{-7}$	$1.581 \cdot 10^{-19}$
770	$1.643 \cdot 10^{-7}$	$1.643 \cdot 10^{-19}$
6394	$3.057 \cdot 10^{-7}$	$3.057 \cdot 10^{-19}$

Fracture-controlled flow

One-element simulation





$k_{int} = \frac{\mu_w}{\rho_w}$	$Flux \frac{\Delta x}{\Delta p}$ with	$\Delta x = 2m$ $\Delta p = 2 MPa$
	Ape	$rture = 2.0 \cdot 10^{-6} m$
Number of tubes	Flux $\left[\frac{\text{kg m}}{\text{m}^3}\frac{\text{m}}{\text{s}}\right]$	k _{int,x} [m ²]
0	$1.581 \cdot 10^{-7}$	$1.581 \cdot 10^{-19}$
770	$1.643 \cdot 10^{-7}$	$1.643 \cdot 10^{-19}$
6394	$3.057 \cdot 10^{-7}$	$3.057 \cdot 10^{-19}$
	Fracture	e-controlled flow

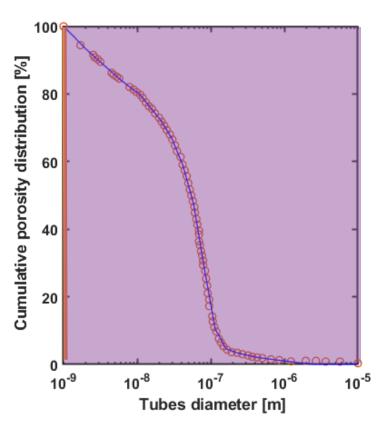
 ${\bf 7.\,200\cdot 10^{-6}}$

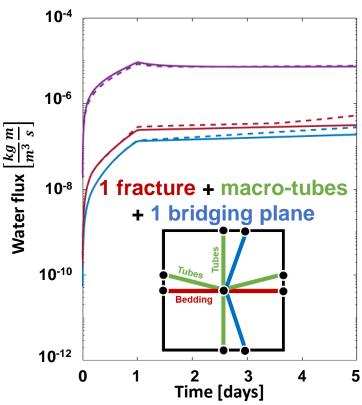
9995

Effect of large pores

 $7.200 \cdot 10^{-18}$

One-element simulation





$k_{\rm int} = \frac{\mu_w}{\rho_w} F lux \frac{\Delta x}{\Delta p}$	$with \begin{array}{l} \Delta x = 2m \\ \Delta p = 2 MPa \end{array}$
	Aperture = $2.0 \cdot 10^{-6} m$

	1190	1 ture = 2.0 for m
Number of tubes	Flux $\left[\frac{\text{kg m}}{\text{m}^3} \frac{\text{m}}{\text{s}}\right]$	k _{int,x} [m ²]
0	$1.581 \cdot 10^{-7}$	$1.581 \cdot 10^{-19}$
770	$1.643 \cdot 10^{-7}$	$1.643 \cdot 10^{-19}$
6394	$3.057 \cdot 10^{-7}$	$3.057 \cdot 10^{-19}$
Fracture-controlled flow		
9995	$7.200 \cdot 10^{-6}$	$7.200 \cdot 10^{-18}$

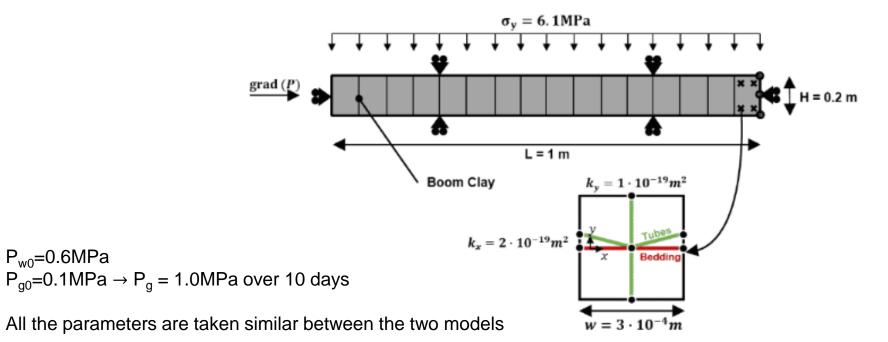
Effect of large pores

Model verification

Comparison with a macro-scale THM coupled model

Geometry

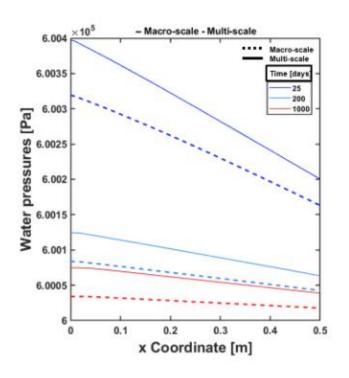
 P_{w0} =0.6MPa

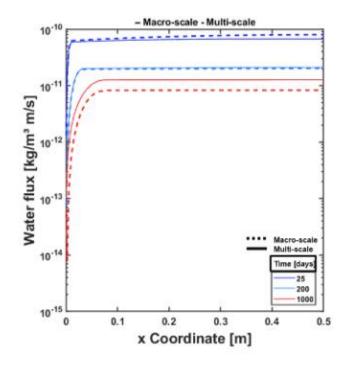


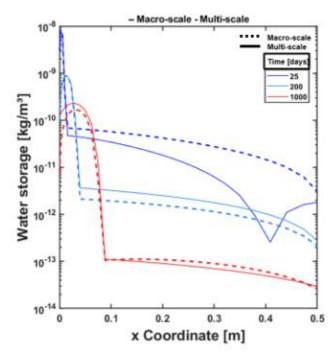
Model verification

Comparison with a macro-scale THM coupled model

Water-related results



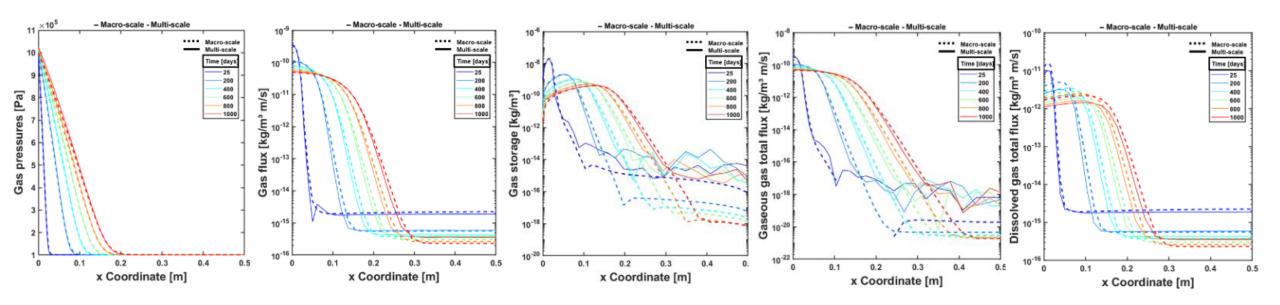




Model verification

Comparison with a macro-scale THM coupled model

Gas-related results



Content

- Context
- 2 From experimental evidence to modelling
- Multi-scale modelling approach
- Preliminary modelling
- **6** Modelling gas injection experiment
- **6** Conclusions

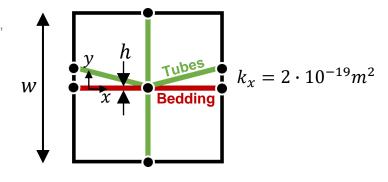
Characterisation of the microstructure parameters

1. Size of the REV

Bedding plane separation $w = 300 \, \mu m$

Experimental estimations of bedding plane separation, from Gonzalez-Blanco (2017)

FESEM	μ-CT	
150 – 270 μm	410 – 560 μm	



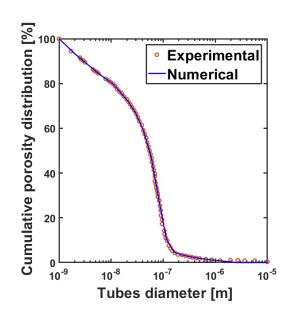
 $k_{\rm v} = 1 \cdot 10^{-19} m^2$

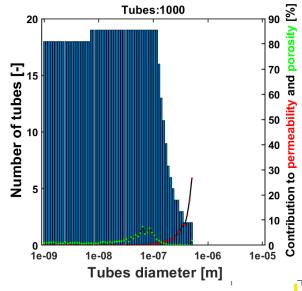
2. Macroporosity

Fitting of the pore size distribution

Effect of small-size pores

(Tortuosity = Calibration factor)





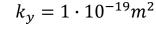
Characterisation of the microstructure parameters

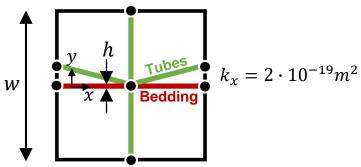
1. Size of the REV

Bedding plane separation $w = 300 \ \mu m$

Experimental estimations of bedding plane separation, from *Gonzalez-Blanco* (2017)

FESEM	μ-CT	
150 – 270 μm	410 – 560 μm	

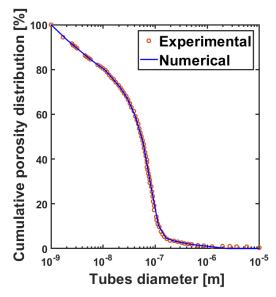


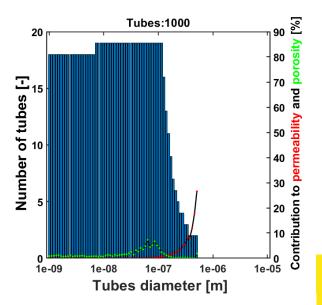


► 2. Macroporosity

Fitting of the pore size distribution

Effect of small-size pores (Tortuosity = Calibration factor)





Fracture aperture

$$k_{x,frac,0} = 10^{-19} m^2$$

 $\rightarrow h_0 = \sqrt[3]{12 \text{ w k}}$

Macropores

$$k_{x} = \frac{\pi}{8} \left(\frac{D}{2}\right)^{4} \left(\frac{1}{w^{2}}\right) + \underbrace{\frac{\widehat{h^{2}(\cdot w)}}{12} \left(\frac{h}{w}\right)}_{k_{y}} \qquad k_{y} = \underbrace{\frac{\pi}{8} \left(\frac{D}{2}\right)^{4} \left(\frac{1}{w^{2}}\right) + \underbrace{\frac{\widehat{h^{2}(\cdot w)}}{12} \left(\frac{h}{w}\right)}_{k_{y}}}_{k_{y}}$$

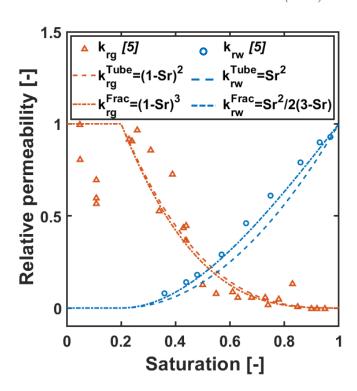
 $k_y = \frac{\pi}{8} \left(\frac{D}{2}\right)^4 \left(\frac{1}{w^2}\right)$

▶ 3. Intrinsic permeability Effect of large-size pores

Characterisation of the microstructure parameters

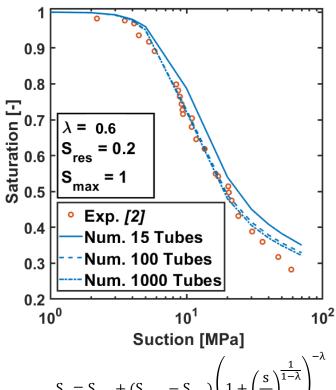
4. Relative permeability curves

Yuster et al. (1951)



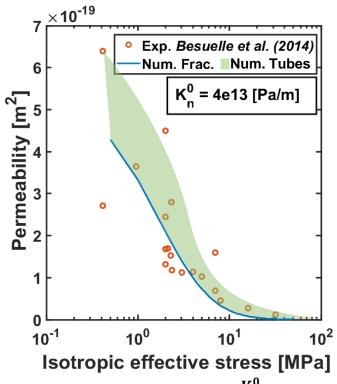
5. Retention curve

Van Genuchten (1980)



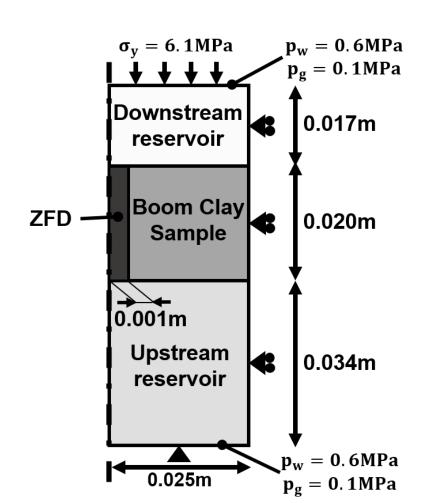
$$S_{r} = S_{res} + (S_{max} - S_{res}) \left(1 + \left(\frac{s}{P_{e}} \right)^{\frac{1}{1 - \lambda}} \right)^{-\lambda}$$

6. Normal stiffness of the fracture Goodman (1976)



$$\Delta \sigma' = K_n \Delta h$$
 with $K_n = \frac{K_n^0}{\left(1 + \frac{\Delta h}{h_0}\right)^2}$

Geometry and boundary conditions



Parameters

Reservoirs

Stiff elements: E = 10000MPa v = 0.3Highly conductive: n = 0.5 $k = 10^{-10}m^2$

Flat retention curve: $P_{entry} = 0.01MPa$

Boom Clay matrix

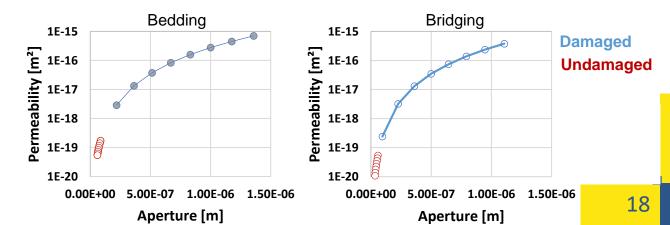
• Mechanical: E = 200 - 400MPa v = 0.33

Hydraulic:

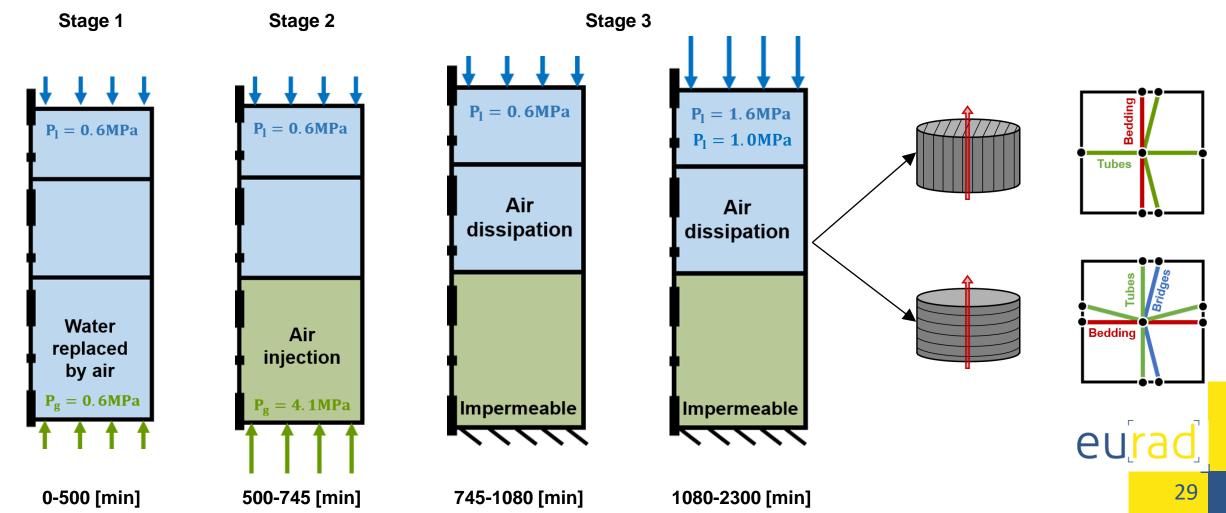
Initial aperture: $0.80 - 1.27 \cdot 10^{-7} m$ Initial permeability: $2.0 - 4.0 \cdot 10^{-19} m^2$

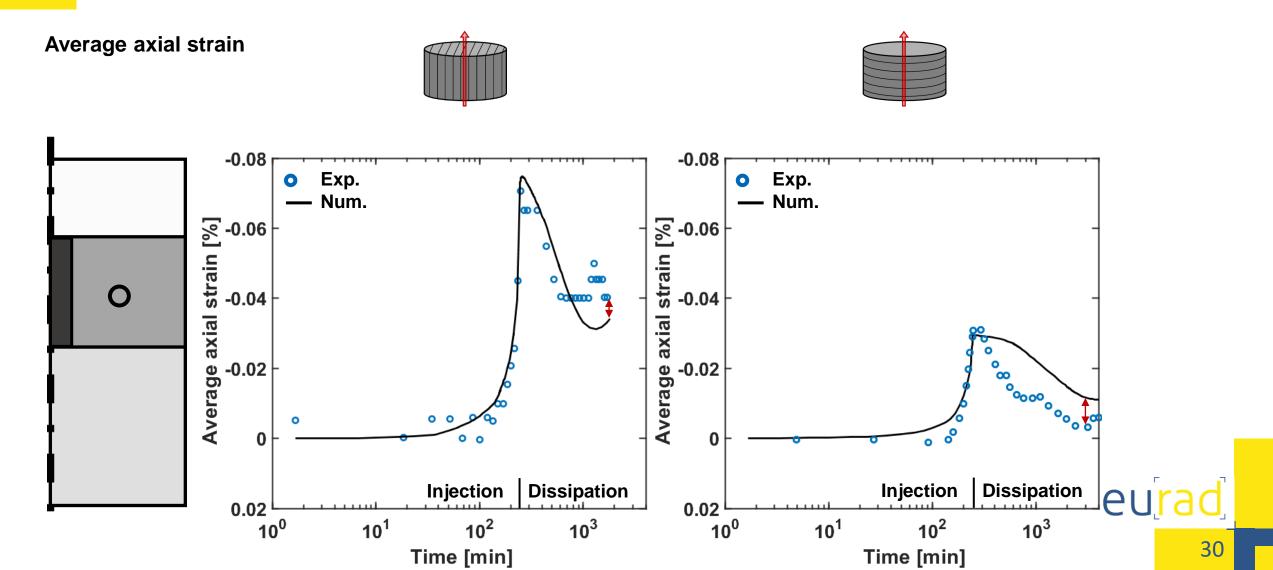
Initial porosity: 0.363

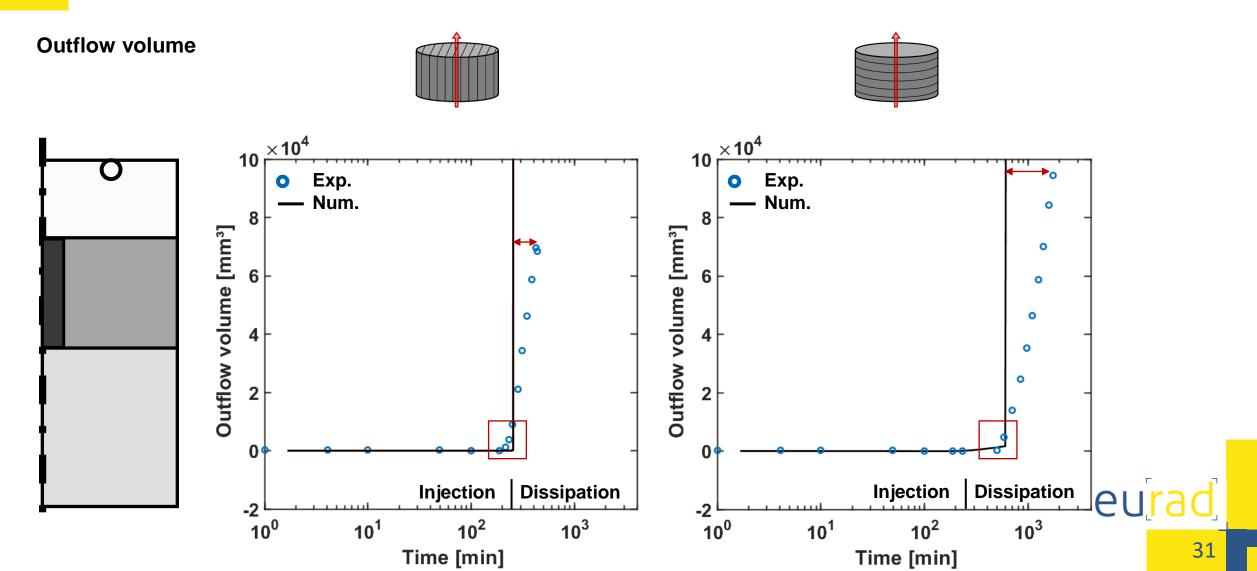
Boom Clay Zone of Fracture Development (ZFD)

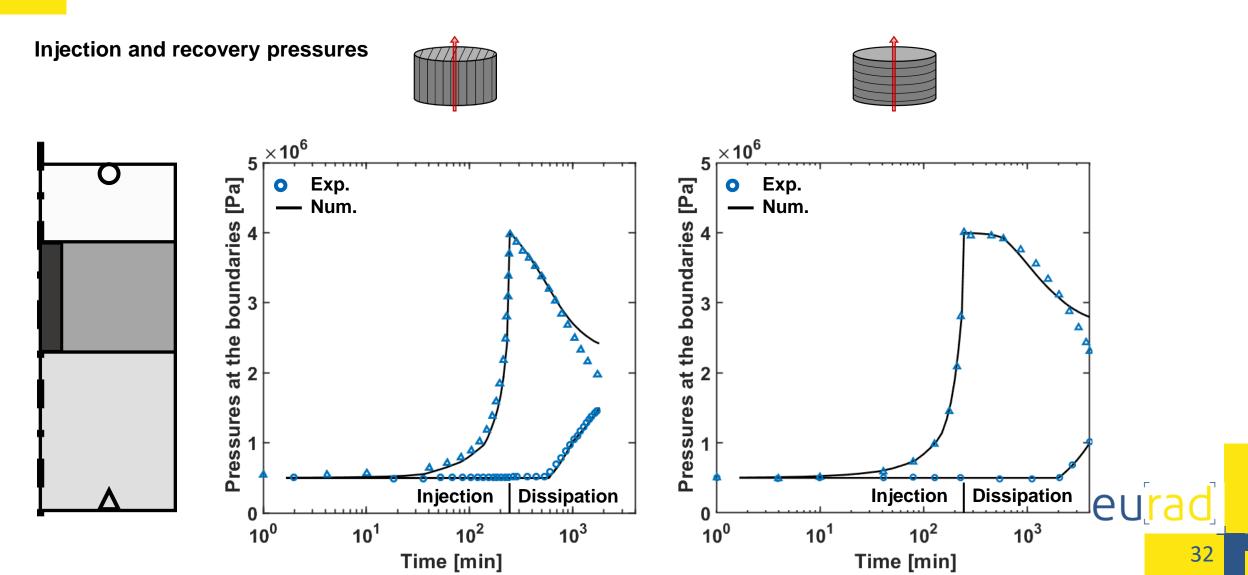


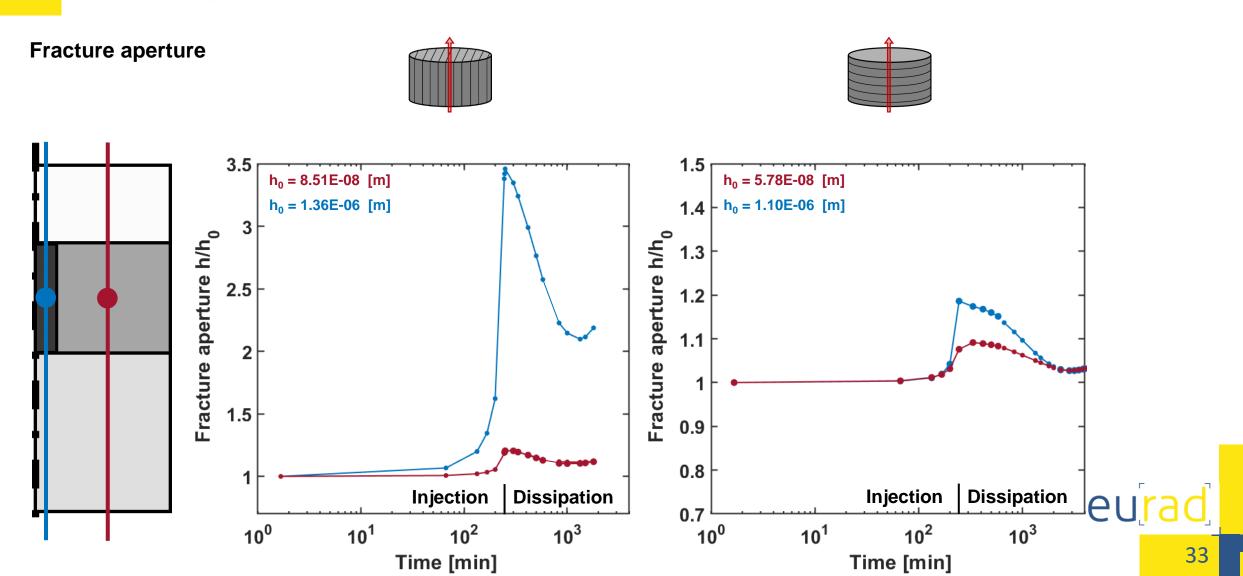
Simulation stages



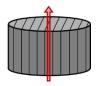


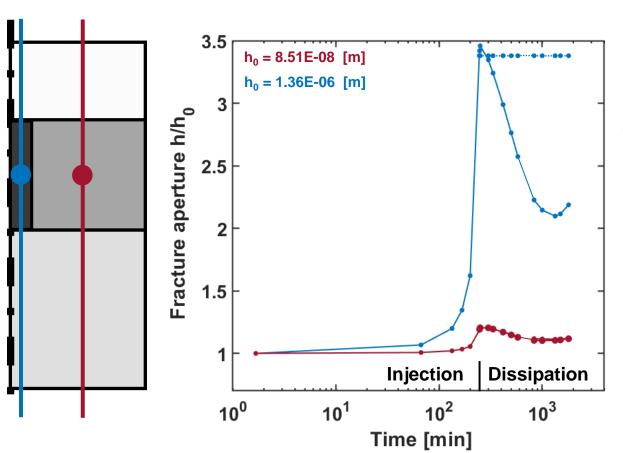


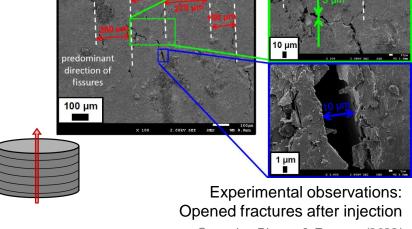




Fracture aperture

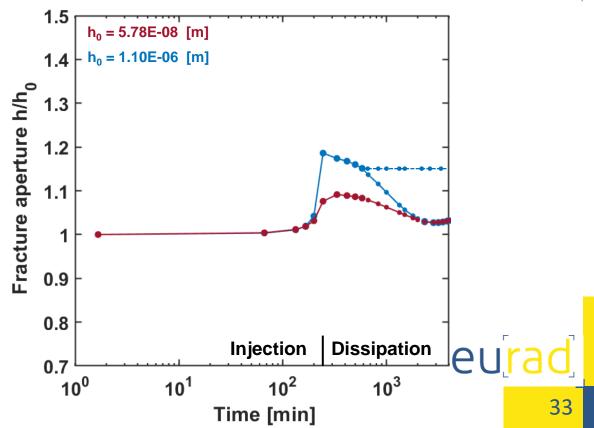


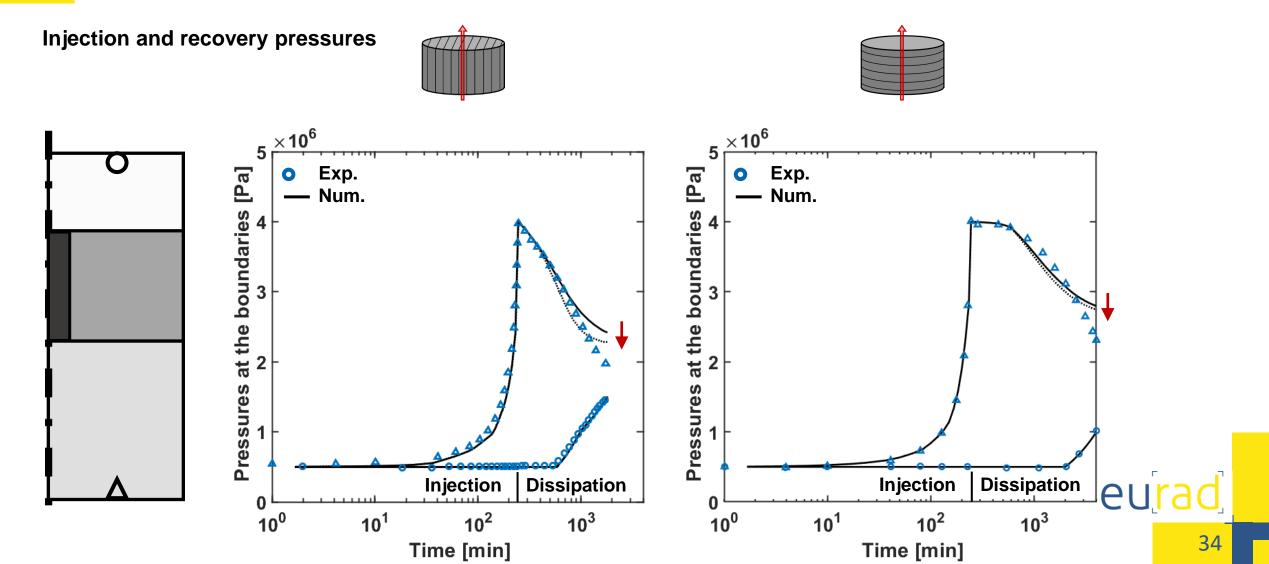




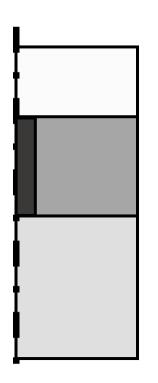
After air injection

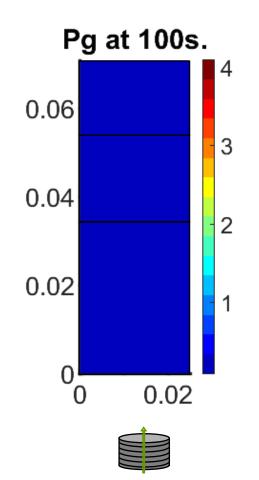
Gonzalez-Blanco & Romero (2022)

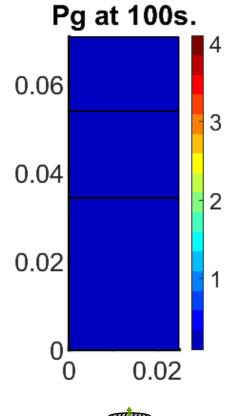




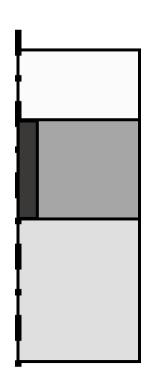
Injection and recovery pressures

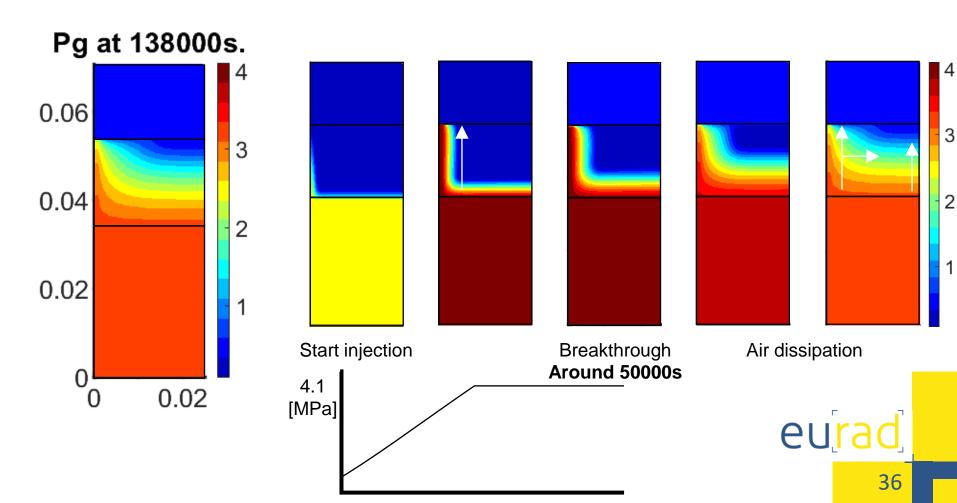






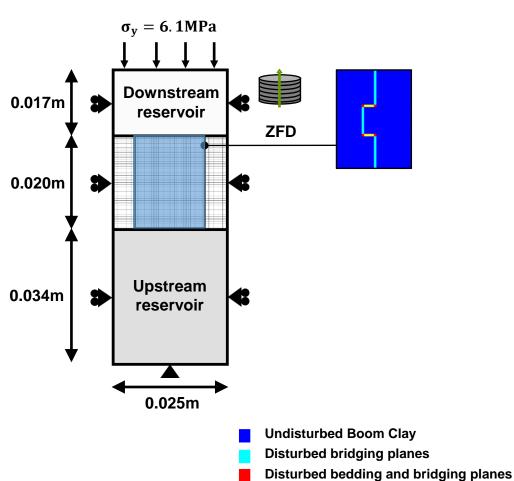
Injection and recovery pressures

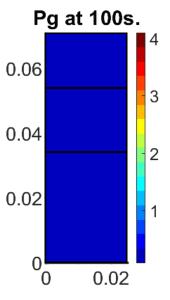




Disturbed bedding planes

Effect of the connectivity of the planes

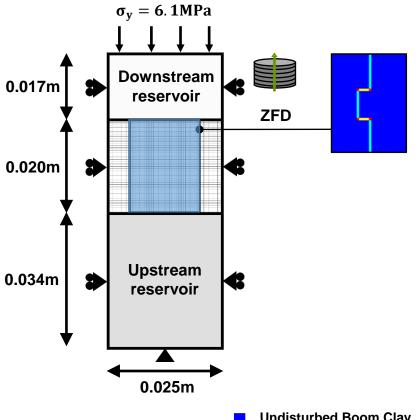


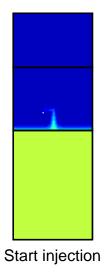


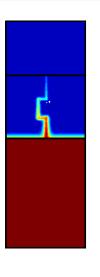
4.1

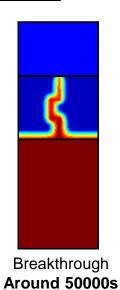
Gas injection experiment

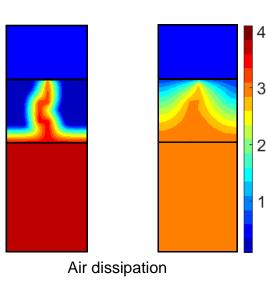
Effect of the connectivity of the planes











Undisturbed Boom Clay

Disturbed bridging planes

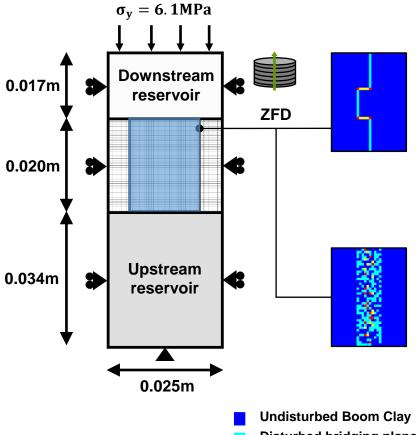
Disturbed bedding and bridging planes

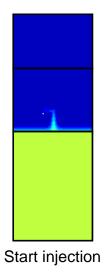
Disturbed bedding planes

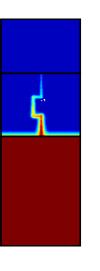
4.1

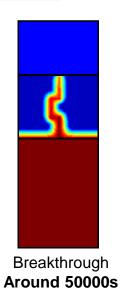
Gas injection experiment

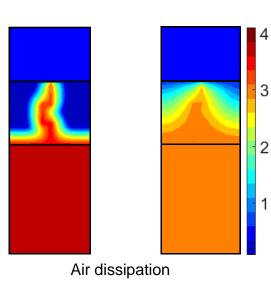
Effect of the connectivity of the planes











Disturbed bridging planes

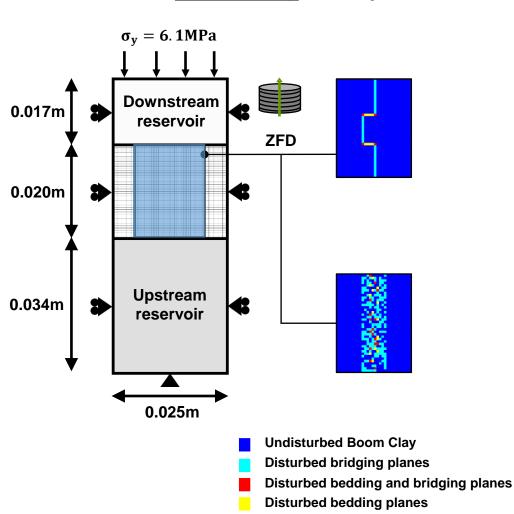
Disturbed bedding and bridging planes

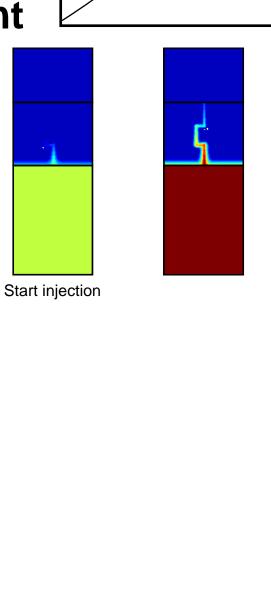
Disturbed bedding planes

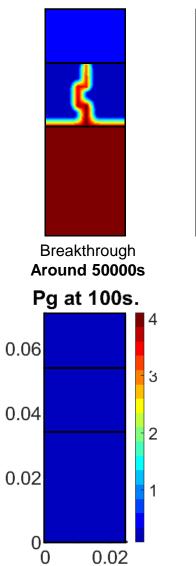
4.1

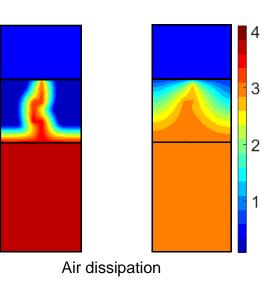
Gas injection experiment

Effect of the connectivity of the planes



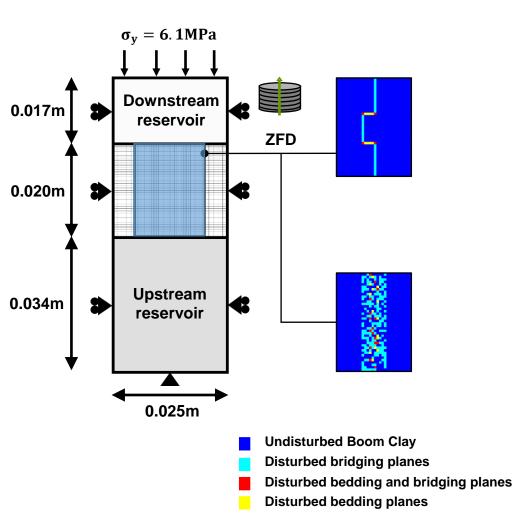


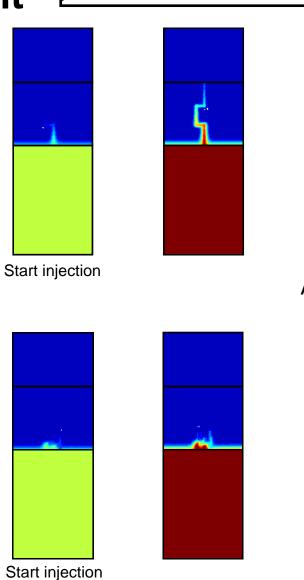


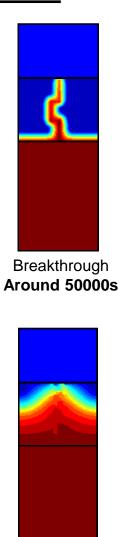


eurad

Effect of the connectivity of the planes

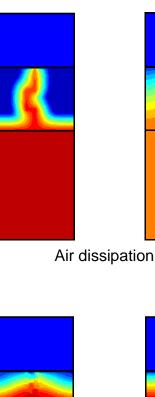


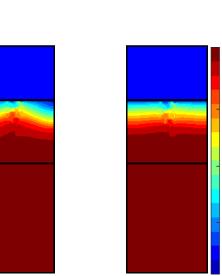




Breakthrough

Around165000s

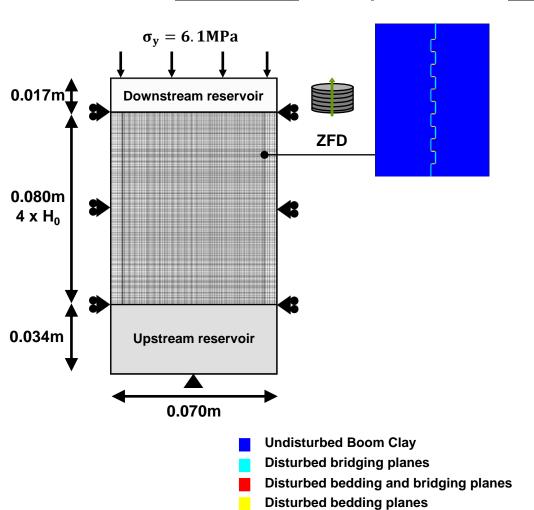




Air dissipation

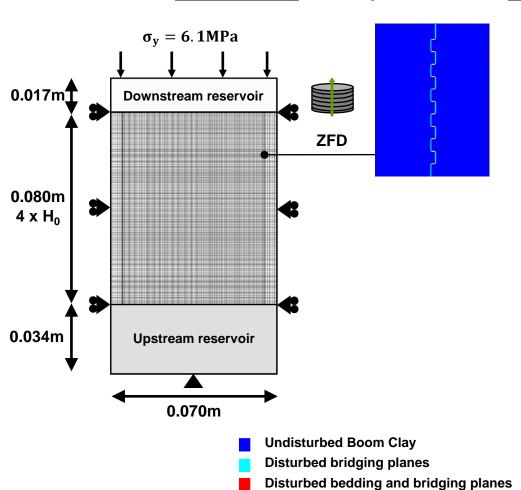
37

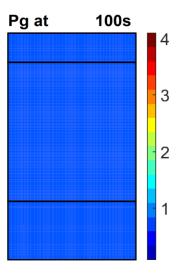
Effect of the connectivity of the planes under up-scaling



Effect of the connectivity of the planes under up-scaling

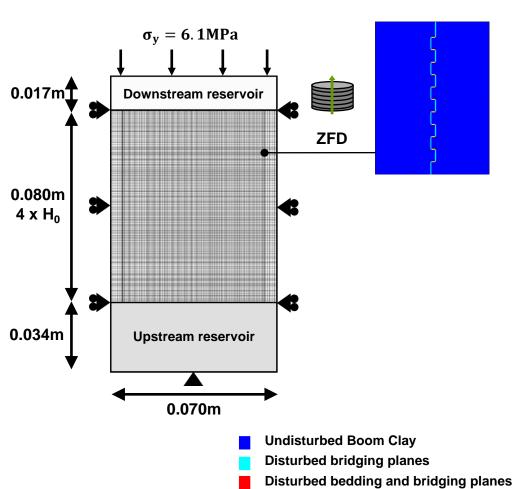
Disturbed bedding planes

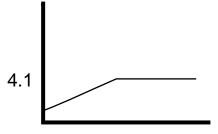


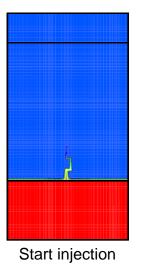


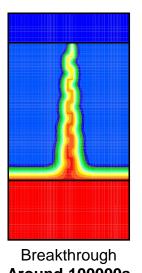
Effect of the connectivity of the planes under up-scaling

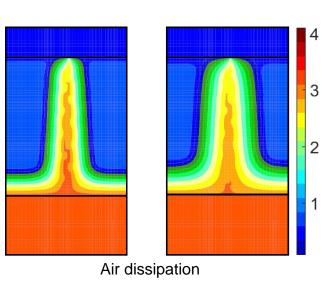
Disturbed bedding planes





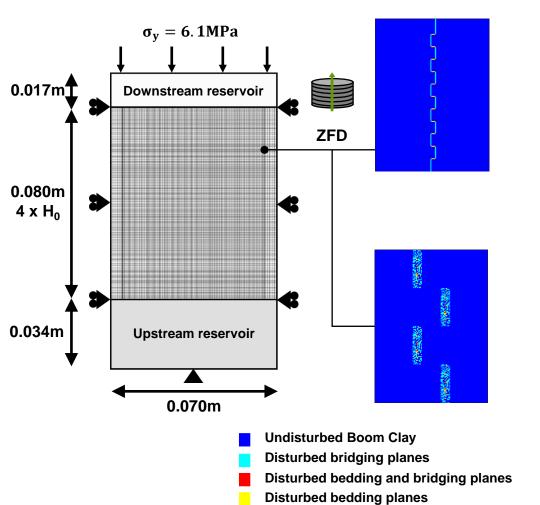


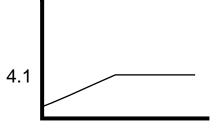


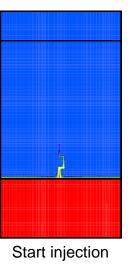


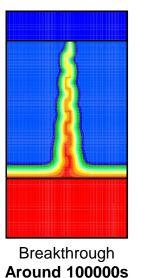
Around 100000s

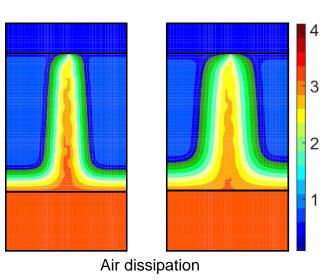
Effect of the connectivity of the planes under up-scaling





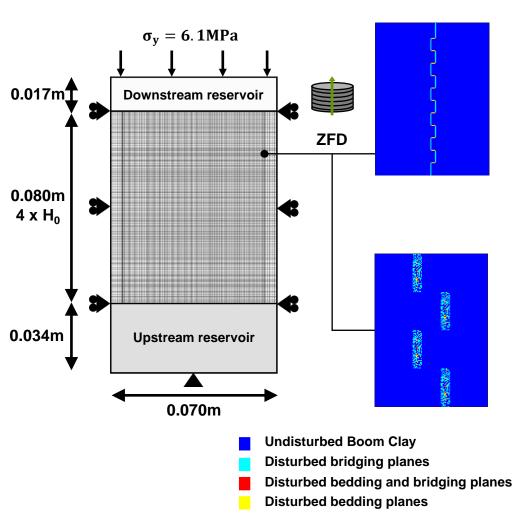


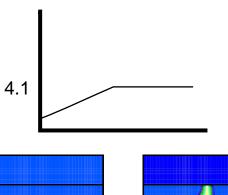


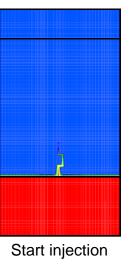


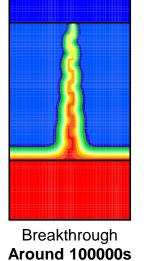
eurad

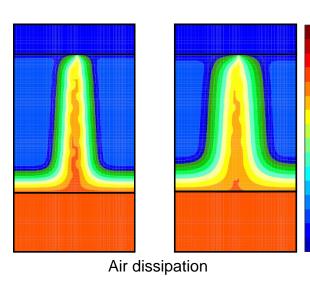
Effect of the connectivity of the planes under up-scaling

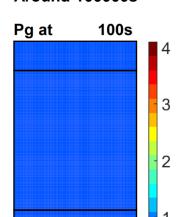






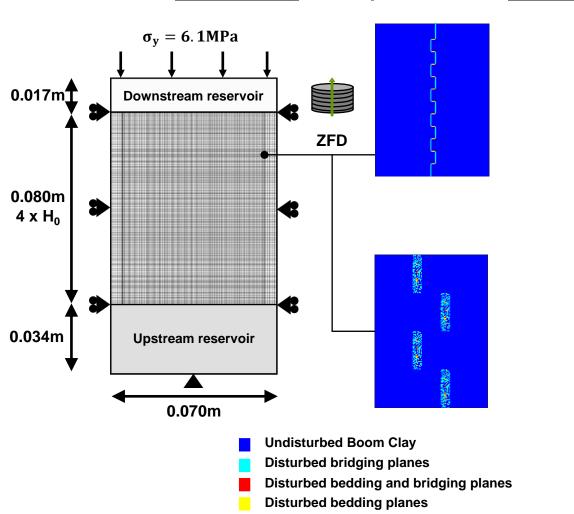


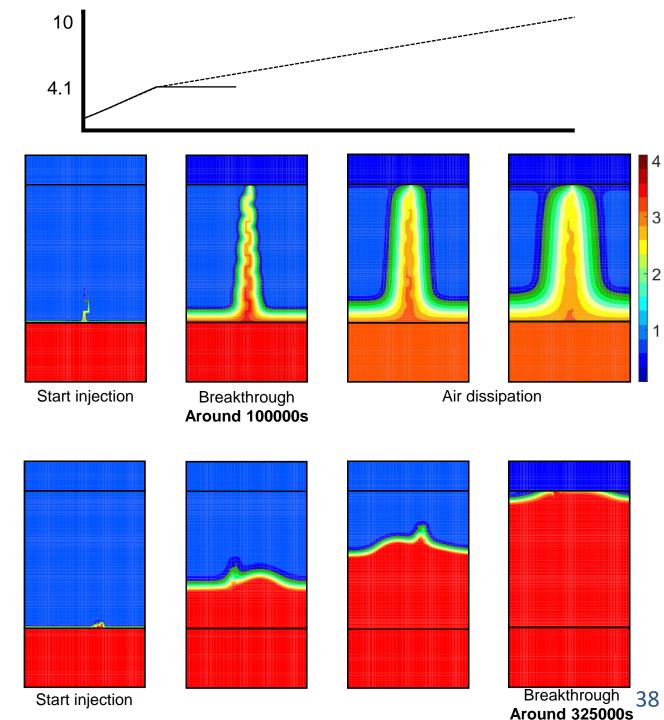




38

Effect of the connectivity of the planes under up-scaling





Content

- Context
- 2 From experimental evidence to modelling
- Multi-scale modelling approach
- Preliminary modelling
- **6** Modelling gas injection experiment
- **6** Conclusions

Conclusions

We **developed** a multi-scale model able to

- 1. Simply idealise the microstructure of the rock with fractures and tubes
- 2. Reproduce mechanisms inherent to gas migrations in sound rock layers

We **showed** that

- 1. Macro-pores, bedding planes and bridging planes play different roles in gas flows
- 2. Preferential flow paths can be generated through fractures with weaker properties
- 3. Different gas mechanisms occur in the presence of weaker bridging planes

Advanced multiphysics of geomaterials: multiscale approaches and heterogeneities

ALERT OZ / EURAD GAS & HITEC Summer School 28 August – 01 September 2023 • Liège (Belgium)

> Pierre BÉSUELLE, <u>Frédéric Collin</u>, Anne-Catherine DIEUDONNÉ, Sebastia OLIVELLA

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n° 847593.