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Context Geological disposal of radioactive wastes
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Conceptual scheme of a deep geological repository.




Context Geological disposal of radioactive wastes
» Complex multi-physical (THMC) processes
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Conceptual scheme of a deep geological repository. Major perturbations of the host rock over the lifetime of a geological repository, -
adapted from Sillen (2012).
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Conceptual scheme of a deep geological repository.
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Geological disposal of radioactive wastes
» Complex multi-physical (THMC) processes
» Interactions between processes
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Major perturbations of the host rock over the lifetime of a geological repository, -
adapted from Sillen (2012).




CO ntext Geological disposal of radioactive wastes
» Complex multi-physical (THMC) processes
» Interactions between processes

” ’ 1st aspect: 2nd aspect: Predictions:
short-term long-term numerical modelling
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Conceptual scheme of a deep geological repository. Major perturbations of the host rock over the lifetime of a geological repository, -
adapted from Sillen (2012).
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Context Gas migration issue
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Conceptual scheme of a deep geological repository Expected gas transport modes in the EDZ and the sound rock,
focussing on the gas generation process. from ONDRAF/NIRAS (2016).




= |

Context Gas migration issue
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Conceptual scheme of a deep geological repository Expected gas transport modes in the EDZ and the sound rock,

focussing on the gas generation process. from ONDRAF/NIRAS (2016).
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From experimental evidence to modelling
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dissolved gas two-phase flow

Phenomenological description of the gas transport processes relevant to low-permeable clayey rocks, adapted from Marschall et al. (2005).

Classical HM two-phase flow models
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From experimental evidence to modelling

Classical HM two-phase flow models

Solid Water Gas
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Triphasic porous medium
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Phases and species

Bright, Aster, Lagamine, OpenGEOSys, Though2/3




From experimental evidence to modelling

Background

}o|uI seb

(i) Advection and diffusion of (ii) Visco-capillary (iii) Dilatancy-controlled gas flow (iv) Gas flow in fractures
dissolved gas two-phase flow

Phenomenological description of the gas transport processes relevant to low-permeable clayey rocks, adapted from Marschall et al. (2005).

Classical HM two-phase flow models Supported by experimental data

eu

L -




From experimental evidence to modelling

Laboratory experiments

Clay-rich material Boom Clay

Intact sample

Gas-induced fracturing, Wiseall et al. (2015)
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From experimental evidence to modelling
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Phenomenological description of the gas transport processes relevant to low-permeable clayey rocks, adapted from Marschall et al. (2005).

Classical HM two-phase flow models Supported by experimental data

* Natural heterogeneities represent preferred weaknesses for r
the process of opening discrete gas-filled pathway e U
 Introduce stronger coupling between gas flow and mechanical
behaviour into the models.
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From experimental evidence to modelling

Advanced HM models

Macroscopic models

» No direct representation of local phenomena
» Enriched with micromechanical effects

Initial "y
> Examples: fracture in i
= Natural heterogeneity based models olivella and Alonso (2008)
= Intrinsic permeability based models  paoen et al. (2016)
» Embedded fracture models
= Explicit fracture based models Cerfontaine et al. (2015) Fmbedded fraciure model.

Alonso et al. (2006) .
| from Gerard et al (2014).
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Conceptual scheme of the explicit fracture based
model, after Cerfontaine et al. (2015) Conceptual scheme of the embedded fracture model, after Olivella et al. (2008)




From experimental evidence to modelling

Advanced HM models

Microscopic models

» Direct modelling of all the microstructure complexity at very low scale
» Useful for modelling at the process scale

» High computational expense at the scale of a repository
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Study of the the physico-chemical properties of dissolved gases in several configurations of a hydrated clay system, from Owusu et al. (2022).
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From experimental evidence to modelling

Advanced HM models
Micro-macro based models

» Combines the benefits from large- and small-scale modelling strategies

» Explicit description of all the constituents on their specific length scale
through a REV definition

o 12

/@i«/
o
/
r A
rr ot

() e U

L
Conceptual scheme of micro-macro based models, with microstructure definitions of a microcracked material,
after (a) Levasseur (2013), (b) Francois (2010), and (c) van den Eijnden (2016).
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Multi-scale modelling approach

Overview 4. Computation at the macro-scale

= Macro-to-micro scale transition: Localisation of
the macro-scale deformations to the micro-scale

3. Homogenisation 1. Localisation

= Resolution of the boundary value problem at the

micro-scale
Po
= Micro-to-macro scale transition: Homogenisation m .
of the micro-scale stresses to compute the i
macroscopic quantities : 2. Computation at the micro-scale
= Resolution of the boundary value problem at the m
macro-scale

Conceptual scheme of the iterative process for the multiscale model

Hybrid developed tool

= Complete hydraulic system implemented and solved at the micro-scale

= Mechanical effects addressed at the macro-scale and implicitly integrated e U
at the lower scale through HM couplings -
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Multi-scale modelling approach

Model formulation at the macroscopic scale

Clay material treated as a porous medium

Solid Water Gas

Solid Liquid Gas
[ phase "|[ phase

Watcr Water
vapour species
1

Mineral Dissolved Dry Gas
species gas gas species
1

Unsaturated triphasic porous medium and
definition of phases and species

Balance equations

Momentum
d6;;

Y

ox

Water

Gas

M

w

J

afw,z'

0x
—

i

Liquid water

M
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v

+p8 =0

-0,=0
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v

~

Dry gas

~
Dissolved gas

Constitutive equations
=  Total stress definition

! M M

= Variation of solid density

py by — dNS Py, + Sfpg) + 6’
Ps (1 - @)K,
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Multi-scale modelling approach

Macro-to-micro scale transition: Localisation

Decomposition of the micro-kinematics:

= Macro-pressure fields (oM) of water and gas must be identical to
the micro-quantities (o™) for any point of the material
pM(P) =

pr(P) pf(P) = Dy "(P)

= For any point P close to P,
at the macroscopic scale:

opM (P) apM (P) )
ox, (xj—xj) Py Mp)~ X p, Mp) + ox) (x-—xj)

M)~ pM(P)+

Higher-order terms neglected
at the microscopic scale:
Mo
ap,, (P)

pm(P) ~ pM(P) + ox

Fluctuation fields to replace higher-order terms

opy! (P)
Py "(P) ~ Py M)+ ——

j \/

Separation of scales

= Approach restricted to situations where the variations of
the macroscopic fields is large compared to the
variations of micro-scale fields

ap)! (P)
S (x; = %)) + PL(P) < D}/ (P)
J
apy! (P)
™ (x; — %, )+p (P)<<p (P)
J
XJ, - X; ) +pf(P) r 3
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Multi-scale modelling approach

Micro-scale boundary value problem

REV generation in general

» Representative of the microstructure

« Large enough to represent the microstructure
+  Small enough to satisfy the principle of scale separation

A Domainof T Domain of
microscopic effects porous medium

1

Inhomogeneous medium

Porosity [-]

Homogeneous medium

0 ' >

0 Elementary Volume

________‘________________

Representativeness of an elementary volume applied to the
concept of porosity, Bear (1972).

Spatial repetition of a very small part of the whole microstructure

Relevant statistical representation of any random part of the micro-scale

Not a unique choice

Examples of two rectangular unit cells, Anthoine (1995)e U
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Multi-scale modelling

Micro-scale boundary value problem

Multi-scale model supported by experimental data

Internal visualisation of a Boom Clay sample
using FESEM, from Gonzalez-Blanco (2017).

Boom clay matrix block

Bridging
Bedding

Homogenisation i

Equivalent
(bundle of) tubes

REV

FE computation

Schematic representation
of the macroscopic scale

w
< >

Localisation

Hydraulic system
resolution

] -

Physical idealisation of the microstructure.

eu -

Definition of the representative
element volume (REV) 17
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Multi-scale modelling approach

Micro-scale boundary value problem

Balance equations at the micro-scale

= Gas = Water

af,

”+dfm+&+ dg‘z ”+ dx"zo

M’” M"'g Mf : Variations of fluid contents
Fw. = Puwlu,
fg = Pgdy; Mass flows
fc;ng,- = Pdguw,; tldg,
r -
» Mechanical effects: computed at the macro-scale and transferred to e UL

the micro-scale through HM couplings
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Multi-scale modelling approach

Micro-scale boundary value problem

Constitutive equations: Hydraulic problem considering a channel flow model (Navier-Stokes equations)

. i - kr, 1 ) k., D* 0O
Advective component: v — Ky, 1 ; Opa ke, hy Ope Go, = _”ﬂA ibe 8P __FKrg s 8}?
o — —— Kfrge 77— — ———=— )
Uo A e o Uo, 12w Ox; o { Mo W= OX;
LLLLLLLLLLLLLL LY is
4 7N N !
hE - D ',' 4 a8
Vi(xz)  |hy Kfrae = — éhb W Kiube = — Em = ] rj ;Vﬁﬂ D, X4
xz ‘\ )’J
A A A i 21' ‘5./ . . . . B
Laminar fluid flow profiles between two parallel plates Laminar fluid flow profiles in a circular pipe
Sz o2 Dy /2
k;" 2” (3 - Sr) krw _ S.l"
D
2 ]
3 k., = (1—
b, = (1-5,) O
1
Gas flow in between of water flows in a fracture space

Gas Water
Gas flow in between of water flows in a circular pipe
Diffusive component

-
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Multi-scale modelling approach _—

o] oo

Micro-scale boundary value problem o [MPa]

First contact
point

Asperities
deformation

Constitutive equations: Hydro-mechanical couplings

» Stress-dependent evolution of micro-elements aperture

,ﬂg’r = K" An ‘ﬂﬂ" =K ﬂﬂh compression
K K! g 26 v h [m]
n= - 3 - =
(] | :ﬂ.h)z Dy Constitutive law describing the normal behaviour
Tha of a rough rock joint, Cerfontaine (2015)

» Stress-dependent formulation of the transmissivity and the entry pressure of micro-elements

h; D*
Kfrac = — Ehb' w Kinhe = — Tl:—128
,;Ilr m m

e = Pey (F_}”) Pe = Pey (%)

i D;,
h=0 hb= hmin

205 cos8 2onLcos8

7 - ey — —————
Fe iy Pe= "D, /2

hy = ho+h Dy =Dy +D Definitions of the hydraulic and the

mechanical aperture in reality (left) and in
the modelling (right), Marinelli (2016)
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Multi-scale modelling approach

Micro-scale boundary value problem H

General principles for numerical resolution of the hydraulic system

= Hydraulic network respecting these conditions: Ps Follow boundary
* Anti-symmetric boundary fluxes !
* Macroscopic pressure gradient between the boundaries
. . m]) ¢.I} ¢.D ‘I"D
= Hydraulic problem established through mass balance on each w e
node (j) oA NG
P11 1 ? Ps
= Hydraulic problem solved ou. o2 0t P3 ¢f of "
= For a given configuration
= Under steady-state conditions w8l 8, 5, ¢®
= By applying the macro-pressure to one node
L -
Lead boundary P2

Example of a channel network with the mass balance on node j

ey,
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=> Channel (fracture or tube) mass fluxes of water and gas

r

Multi-scale modelling approach

Micro-scale boundary value problem

Pk

rn, 0P,
K

w

Hy ds

— —

Advection of liquid water

-S. 7D

-

k )p™ ) p™
p‘g T dpg Pg krw dpw
= — k— — H, K
Hg ds Hu os
“ J
— -~
Advection of gaseous gas

Advection of dissolved gas

)0 u

Hy [ pypeo 0Py  PePup O™
rw PPagjw— -

Pgo OS Xw OS

e

General principles for numerical resolution of the hydraulic system

Hydraulic network respecting these conditions:
* Anti-symmetric boundary fluxes

Macroscopic pressure gradient between the boundaries

)

Diffusion of dissolved gas

Lead boundary

P ¢

Ps Follow boundary
>
ol &y b, PP
w? w® )
— ® — L
d’i)d’é: llJA pa ¢'C; ¢g’¢c p4 lj *
w'f| o8, 0p0° )
>
P2

Example of a channel network with the mass balance on node j
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Multi-scale modelling approach

Micro-scale boundary value problem

General principles for numerical resolution of the hydraulic system

= Hydraulic problem established through mass balance on each Ps Follow boundary
node (j)
» Mass conservation principle, i.e. for each node of the

network, the sum of the input flows is equal to the sum of > >
w’l 3, g PP
the output flows wre .
dﬂ)i (A)A {l)c
= =0 & o'+ ol + o =0 pi ¢ - e " _ep, . o
ds oh do. U P3 ¢° ¢f 0" )

a = w,g Liquid or gaseous phase

» Well-posed hydraulic system to solve

G Py =0 |G| 1P} + |G| 1P} =0 :
Lead boundary P2

= For a given configuration Example of a channel network with the mass balance on node j
» Under steady-state conditions
= By applying the macro-pressure to one node e U

mB‘ oL, o5 P°

r 1

L
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Multi-scale modelling approach

Micro-to-macro scale transition: Homogenisation

=  Fluid fluxes

I
; rJ), " r)Jl 1 I MM _f 7 id T
P~ o [ i~ o [ qipstar o i = 5 [ 06
I !
(3‘;}“- .
- e dl
2 o [rq“"‘
1

= Fluid masses: total amount of fluids inside the fractures and tubes

M m m
M, = Q f!)”” pwd 2 My = My + M7,
- wS n ]

- pg (1 - Sru-) q)” + pngru‘q)”

eu
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Multi-scale modelling approach

Macro-scale boundary value problem

=  Under matrix form:

; ; rJSV{)ﬂJEL h r<r8':?;4\> A
[wa} (3x3) [KWK} (3x3) ! Pw ) (3) G xSMW 7 (3) \
M M 4 ™ — ' M ™
[ng} (3%3) [Ktﬁfg} (3x3) 4 5;{1? . 4 SSJ;M \
. Pg ) (3) ) . Mg 7 (3) )

Summarized as:

[AM] 10%10) {SUM} 10) {BZM}(IG)

ey,
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Preliminary modelling

One-element simulation 5mpnr"“5”re ampal o

R

’ |—> time (@ <, Q ————— time
Bedding plane separation: Loading % % Injection test
= 300um grad R, Response = Mechanically blocked

»“D "’c ' = Water pressure increase
Bedding plane aperture: 4 4 = 3MPa to 5MPa
= 0.1um » Gas pressure imposed at 3MPa
c & o

A
v

Tubes diameter

.. ) 2m
— Distribution curve

Bridging plane aperture
— not considered
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Preliminary modelling

One-element simulation 5MPa] e ampal
vVoyoy b
|—b time (@ <, Q ————— time
Bedding plane separation: Loading % % Injection test
= 300um grad R, <'43 Response = Mechanically blocked
—_— — .
»” = Water pressure increase
Bedding plane aperture: — from 3MPa to 5MPa
= 0.1um | » Gas pressure imposed at 3MPa
Tubes diameter >
o . At 2m
— Distribution curve Localisation Homogenisation
Bridging plane aperture 300um 300um 300um
— not considered ' T .'.m
_ s e o ® @ o
Load'“g @ e @ Eam—— @ O ._Q_; o _.—‘ i ReSpOﬂSG
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Preliminary modelling

One-element simulation

My Ax . Ax = 2m
Kint = EFZuxA_p with Ap = 2 MPa
100 106 Aperture = 2.0 - 10™°m

. Number of tubes kg m Kintx [M?]
& Flux F;
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Preliminary modelling

One-element simulation

Hw Ax . Ax = 2m
Kint = — Flux — th
int o ux Ap wi Ap = 2 MPa
100 106 Aperture = 2.0 - 10™°m
Number of tubes kg m Kintx [m?]
S Flux | —— ’
%. m- S
80 107
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Preliminary modelling

One-element simulation

Uw Ax Ax = 2m
Kipe = — Flux— ]
int o lux Ap with Ap = 2 MPa
100 10 Aperture = 2.0-107°m
. Number of tubes kg m Kintx [M?]
& Flux i
S 8o 107 L
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Preliminary modelling

One-element simulation

U Ax ) Ax =2m
Kint = . FluxE with Ap = 2 MPa
1005 104 | | | | Aperture = 2.0 - 107°m

_ Number of tubes [kg m Kintx [M?]
S Flux
5 8o
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L
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Preliminary modelling

One-element simulation
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Model verification

Comparison with a macro-scale THM coupled model
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Model verification

Comparison with a macro-scale THM coupled model

Water-related results
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Model verification

Comparison with a macro-scale THM coupled model

Gas-related results
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Gas Injection experiment
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Gas Injection experiment
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Gas Injection experiment

Characterisation of the microstructure parameters

» 4. Relative

permeability curves
Yuster et al. (1951)

1.5 x x
o kg [5] o k. [5]
— o kTube=(.|_sl_)2 _ kTube=sl_2
el rg rw
2 | kf£a°=(1-Sr)3 - KI'*°=8r?/2(3-5r)
E 1= v A I
® S o
Q % P
= “ % v
- A v A A
Q * 1"1(
o 2 % 0
& /"1, .
g 0.5 ‘}\\ ‘A O, . f( ’
= \‘Q\ ,.,: s
S N, 95
Q P’
o LS =
§-2e A Bion
0 __________________ = %“éﬂ-ﬁ_ﬁﬁ__
0 0.2 04 0.6 0.8 1

Saturation [-]

» 5. Retention curve
Van Genuchten (1980)

o
-.q

Saturation [-]
o
[=2]

0.5 -
0.4 Num. 15 Tubes NN |
0.3 H-~~Num. 100 Tubes o
----- Num. 1000 Tubes
0.2 — .
10° 10' 102

Suction [MPa]

-A
1
s \1-2
St = Sres + (Smax — Sres) | 1+ <P_)
e

» 6. Normal stiffness of the fracture

Goodman (1976)

. x1071° . .
© Exp. Besuelle et al. (2014)
6 ——Num. Frac. Num. Tubes [
o K? = 4e13 [Pa/m]
gSf
Zat
=
o3t
S
5,1
o
1 -
0 AALL i A A Al A i
107" 10° 10’ 102
Isotropic effective stress [MPa]
KO
Ac’' = KyAh with K, =————
(1+5)
hy

.-



=l

r

Gas Injection experiment

Geometry and boundary conditions
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Gas Injection experiment

Simulation stages
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Gas Injection experiment

Average axial strain
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Gas Injection experiment

Outflow volume
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Gas Injection experiment

Injection and recovery pressures
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Gas Injection experiment

Fracture aperture

Fracture aperture hlho
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Gas Injection experiment

Fracture aperture
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Gas Injection experiment

Injection and recovery pressures
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Gas Injection experiment

Injection and recovery pressures
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Gas Injection experiment

Injection and recovery pressures
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Gas Injection experiment

Pg at 100s.

Effect of the connectivity of the planes 0.06
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Gas Injection experiment

Effect of the connectivity of the planes
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Gas Injection experiment

Effect of the connectivity of the planes
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Gas Injection experiment

Effect of the connectivity of the planes
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Gas Injection experiment

Effect of the connectivity of the planes
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Gas Injection experiment

Effect of the connectivity of the planes under up-scaling
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Gas Injection experiment

Pg at 100s
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Gas Injection experiment
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Gas Injection experiment
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Gas Injection experiment

Effect of the connectivity of the planes under up-scaling
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Conclusions

We developed a multi-scale model able to

1. Simply idealise the microstructure of the rock with fractures and tubes
2. Reproduce mechanisms inherent to gas migrations in sound rock layers

We showed that

1. Macro-pores, bedding planes and bridging planes play different roles in gas flows
2. Preferential flow paths can be generated through fractures with weaker properties
3. Different gas mechanisms occur in the presence of weaker bridging planes
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